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A theorem of Lelek and McAuley [2] shows that every locally compact,
loecally connected Hausdorff space X, which is the image of the real line
R under a one-to-one, continuous function, must be homeomorphic to
one of the following simple spaces: (1) an open interval; (2) a figure eight;
(3) a dumb-bell; (4) a letter theta; (5) a noose.

’ To prove this result, they prove the following equivalent theorem,
concerning ‘the “endpoints” of X:

If f is a one-to-one, continuous function from R onto a locally com-

pact, locally eonnected Hausdorff space X, and if we define

a(f) = ﬂlcl{f(t)lt< —n}, o(f)= ﬂlcl{f(t)lt>n},
then either a(f) = [J or lim f(¢) exists; and either o (f) = (O or limf(t)
exists. t=>—c0 b0

If we drop the assumption that X be locally connected, and assume
instead that X is compact, we can prove the following analogous result:

THEOREM 1. Let f be a one-to-one, continuous function from R onto
a compact Hausdorff space X, and let a(f) and w(f) be defined as above.
Then exactly one of the following five conditions occurs:

(a) There exist compact intervals I~ and It included in R such that

a(f) = {f@Itel"}, o(f) ={fO)teI}.

(b) There exist a number teR and a compact interval I~ < (— oo, 7]
such that

a(f) = {fOIteI™}, o(f) = {f(O)[te(—o00, 7]}

(¢) There exist a number teR and compact intervals I~ and J such
that

I"cJ < (1, ), alf) = {fDItel"} and w(f) = {fB)te] U(—o0, ]}
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(d) There exist a number e R and a. compact interval IT < [t, o) such
that

o(f) = {f@)IteI™}, a(f) = {f(t)te[r, oo)}.
(e) There exist a number veR and compact intervals It and J such
that
I*cJ s (—,7), o(f) = {f®teI"} and a(f) = {f(t)ted U1, 0)}.
LEMMA 1. Let f and X be as in the statement of Theorem 1.
Then a(f) and w(f) are non-empty, compact, and connected.

Proof. Clear.

LEMMA 2. Let f be a one-to-one continuous function from R onto a locally
compact Hausdorff space X.
(a) There exists a decreasing sequence {t,} of real numbers such that

t,—> —oo as n— oo, and f(t,)dua(f) for each n =1,2, ...
(b) There exists an increasing sequence {t,} of real numbers such that
t,—~> o a8 n— oo, and f(t,)¢w(f) for each n =1,2, ...

Proof. It suffices to prove (a). We remark that «(f), being a closed
subset of X, must be locally compact. For each n =1,2,... let

A, = {f)ea(f)l —n <t < n}.

Then A, is closed for each n =1,2,..., and a(f) is the union of
the sets A,. Therefore, by the Baire Category Theorem, we can choose
an integer N, a point ze¢A,, and a neighborhood U of z, such that

Una(f)c Ay.

Since rea(f), we can choose a decreasing sequence {t,} of real numbers
such that ¢, < — N for every n =1,2,...,¢, > —o0 as n — oo, and
f(t,)eU for every n =1,2,... Clearly, since f is one-to-one, we must
have ‘

ft,)¢a(f) for each n =1,2,...

LEMMA 3. Let f and X be as in the statement of Theorem 1.
(a) Either there exists ve<R such that f(t)ea(f) for all t >, or there
exists a compact interval I~ < R such that

a(f) = {f(t)Itel"}.

(b) Either there exists teR such that f(t)ew (f) for all t < 7, or there
exists a compact interval I < R such that

o(f) = {f(O)teI"}.
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Proof. It suffices to prove (a). If we cannot choose <R such that
f(t)ea(f) for all t > 7, then choose an increasing sequence {t,} (n = 1,2, ...)
such that ¢, > oo as n — oo, and f(¢,)¢a(f) for all n =1, 2,

Using Lemma 2, choose {t,} (n =0, —1, —2,...) such_ thatt decrea-
ses to —oo as n - — oo, and f(tn)g‘a(f) for all n = 0, —1, —2, ... Then

a(f) = U f f\f n n+l]

n=-—00

and since this union is a disjoint one, Sierpinski’s Theorem (see Kura-
towski [1], p. 173) implies that a(f) < f([?,,?.,.]) for some integer n.

From this and Lemma 1, we deduce easily that there is a compact
interval I~ < R such that

a(f) = {f(t)ltel™}.

LEMMA 4. Let f and X be as in the statement of Theorem 1.
(a) Suppose we can find a number oeR such that

f(8)ew(f) for each s < o

Then exactly one of the conditions (b), (c) of Theorem 1 holds.
(b) Suppose we can find a number oce¢R such that

f(8)ea(f) for each 8 > o

Then exactly one of the conditions (d), (e) of Theorem 1 holds.

Proof. Again it suffices to prove (a). Suppose oceR, and f(s)ew(f)
for all s < 0. Since o (f) is compact, we clearly have a(f) < w(f), and we
deduce from Lemmas 2 and 3 that there exists a compact interval I~ < R
such that

a(f) = {f(®)|tel"}.

Let Q = {{eR|f(t)ew(f)}. £2 is a closed subset of R, both I~ and
(— o0, o] are contained in £, and there are arbitrarily large real numbers
which do not belong to 2. Let (— oo, v] be the component of 2 which
contains (—oo, o], and let J be the component of £ which contains I~.
It is easy to see that either J = (—o0, 7], or J is a compact interval
[a, b] disjoint from (— oo, 7].

We claim that Q\((—o0,7] UJ) can be written as a countable
disjoint union of compact subsets. We shall prove this only in the case
J = [a, b], as the other case is similar (and easier).
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Choose sequences {s,} and {t,} (n =0, +1, +2,...) in R\ 2 such
that s, decreases to T as n — — oo, 8, increases to a as n — oo, t, decreases
to b as n — — oo, and ¢, increases to co as n — oo. Then the union

o))

U ([8n9 sn+l] N 'Q) v U ([tn’ tn+l] N Q)
Nn=—o00 n=—00
exhibits 2\((— o0, 7] U J) as a countable disjoint union of compact
subsets.
Thus we can choose a countable, pairwise-disjoint family {4,, 4,,...}
of compact sets, whose union is Q2\((— o0, 7] U J). Now f((—o0, ] U J)
is clearly a closed subset of w(f), and therefore, since

o(f) = fl(= e, 10 I) U U fdy),

it follows from Sierpinski’s Theorem that 4, = [ for every n =1, 2, ...
This shows that Q = (— o0, 7] U J, and the Lemma follows easily.

Proof of Theorem 1. Theorem 1 is an elementary consequence of
the above lemmas.

Definition. Let f be a one-to-one, continuous function from R onto
a compact Hausdorff space X. Then a point zeX is said to be a simple
endpoint of f if either a(f) = {a} or w(f) = {=}.

LeEMMA 5. Let f and g be continuous, one-to-one functions from R onto
a compact Hausdorff space X, and let veX.

(8) ea(f) U o(f) iff zealg) U o(g).

(b) x 18 a stmple endpoint of f iff x is a simple endpoint of g.

Proof. This lemma may be proved easily, by examining the nature
of small compact neighborhoods of . .

THEOREM 2. Let f and g be continuous one-to-one functions from R onto
a compact Hausdorff space X, and let ¢ (t) = g~*(f(t)) for all t in R.

If toe R and ¢ t8 not continuous on the left [right] at ty, then f(t,) 18
a simple endpoint of f, and as t increases [decreases] to t,, we have either
@(t) > oo or p(t) > — oo.

Proof. This theorem can be proved easily, by an application of
Sierpiniski’s Theorem to a space of the form f([¢{,— d,¢,]). We omit the
details.

Using Theorem 2, we can partition the family § of compact, one-to-
-one, continuous images of R by writing X ~ Y whenever there exist
one-to-one, continuous functions f and g from R onto X and Y respecti-
vely, such that

fHa(f)) =97 Ya(g) and [ o(f)) =g w(g),

and then noting that ~ is an equivalence relation in .
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It can be seen that ~ partitions § into the 28 equivalence classes
which are illustrated in the figures, and that no two spaces in different
classes can be homeomorphic. Classes 1, 2 and 3 are composed of the

o—0  C5D

Fig.4 Fig.5 Fig6 ™\
Fig7 Fig.8 Fig9 S
Fig.10 \\\§D

Fig.23 Fig.24

Fig.28

locally connected members of &, and up to homeomorphism, each of these
classes has only one member. It is not hard to show that each of the other
classes has uncountably many non-homeomorphic members.
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