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Suppose k, n, and m are integers greater than 1 and § is a set. Fur-
ther, suppose S; is a class of non-empty subsets of § (for ¢ =0,1,...,
k—1). We will refer to an element of 8; as an i-space. (S, 81y ...y Si_1)
is a finite Bolyaf-Lobatchevsky (B-L) k-space if the following axioms hold:

1. 8 = {{a} | ae8},

2. 8, #9.

DEFINITIONS. A is an ¢-space of, or is on, a j-space B <A < B or
B c A. Pis a point <>PeS,. 1is a line <1eS,. a i3 a plane <> aeS,.

3. 1 is a line = H exactly n points, each of which is on 1.

4. 1e8; > JPeSy> P~ 1 =0 (2 <k-1).

5. leS8; (1 <k—1), PeSy, P~ 1l=0 = H unique I'eS;,,2l =1’ and
P <7V (I' may be called IP or Pl; it may be said that I' is determined
by ! and P).

6. P and @ are distinct points of an i-space A = PQ < A.

7. leSk_l,feSk_l =1 r\f = Q, l r\f = l, or lf\fGSk_zo

DEFINITION. Let I and f be i-spaces, each on some (¢-+1)-space g.
Then ! is parallel to f<1~ f = 0.

8. If P is a point not on a given line I, then there are exactly m lines
on P (and on Pl) parallel to I.

It is the primary purpose of this paper to show that no finite B-L
k-space exists for k¥ > 3. We will assume that such a space exists, and
arrive at a contradiction. Several theorems applicable to the case k¥ = 3,
are proved in the process.

THEOREMS FOR THE OCASES k> 3

THEOREM. A plane is determined by any two lines which have exactly
one point in common (whose intersection is a single point).

Proof. Each line has n points on it, » > 1, so there is a point on
one line which is not on the other. Such a point and the line not contain-
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ing it determine a plane. The fact that any two planes so determined
are identical is a simple exercise.
THEOREM. There are n+ m lines of a plane on any point of that plane.
Proof. Given a point P of plane n, J a line ! not on P. There are n
lines on P (and on x) intersecting !, and m lines on p not intersecting 1.
THEOREM. There are t, = (n+m)(n—1)+1 points on a plane.
Proof. Let P be a point of plane n. There are n+ m lines of » on P
and n—1 points (other than P) on each such line. The number of points
(not P) on lines on P is thus (n+m)(n—1). That ¢, is actually a count
of points of = is then a simple exercise, since any point of n is on a line
of » on P. Several counting results follow, with a short justification:

1. The number of lines on a plane, ¢,, i8 n+ m/nt,. This is a result
of the relationship ¢,m = (n+ m)t,. This equation is obtained by count-
ing all possible ordered pairs (P;, ;) where P; is a point on the line I; [2].
There are f, points, each with n-+ m lines on it. Thus there are t,(n -+ m)
such ordered pairs. But there are ¢, lines, each with » points on it, giving
g.n ordered pairs. These countings are obviously exhaustive and involve
no repetition, so they must yield the same result.

From the equation ¢,» = (n+m)t;, a necessary condition for the
existence of a finite B-L plane has been obtained [1]:

g:m = (n+m)t, = nty+mt; = nty+m(n+m)(n—1)+1],
gsn = nty+mn(n—1)+m2(n—1)+m,
gan = nty,+mnt—mn+ min—(m2—m).

Since » is a factor of each term except (m?—m), and all terms are
integers, it is obvious that n | m(m —1). This, then is a necessary condi-
tion for the existence of the plane.

2. The number of lines on a plane parallel to a given line of that
plane is ¢ = ¢,—n(n+m—1)—1. Suppose ! is the given line. There are
q.—1 lines (other than ) on the given plane. At each of the n points of I,
n+m—1 of the lines (not !) intersect I. Thus n(n+m—1) lines other
than [ intersect !. Lines parallel to ! are thus ¢ in number.

3. There are ¢* = i— (n—1)m lines parallel to each of two intersec-
ting (distinet) lines and in the plane determined by those two lines. Let h
and j be the lines, with intersection the point P. There are ¢ lines (on the
plane of % and j) parallel to j. On each point of A (not P) are exactly m
of these parallels. There are »—1 points of & other than P, or m(n—lj
of the ¢ lines parallel to j are not parallel to k. This leaves ¢—m(n—1)
lines parallel to both lines j and k (I omit, of course, certain details
such as distinetnessin these abbreviated proofs). Manipulation yields i* =
m(m—1)(n—1)/n.
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4. t, = (n+m)({;—n)+n is the number of points on a 3-space.
Points of a 3-space are all on the planes which are on a given line of that
3-space. There are n+ m planes on a line of the 3-space. To prove this,
consider a given line I, and P a point of I. Certainly on P there is a plane
n containing no other points of I. Then planes on ! intersect n in lines
on P. There are exactly n+ m lines of = on P, hence exactly n+4 m planes
of the 3-space on l. Points not on ! are {,—» in number for each such
plane, so there are (¢,— n)(n-+m) points not on ! in the 3-space. Adding
the » points of I gives the formula for #,.

5. Let = be a plane and P a point not on n. Then the number of
planes on P (and on the 3-space Px) parallel to = is

. n—1
mz—@"‘:mz—m(m—l)( )
n

The proof here is somewhat longer. Let [ and j be two distinct lines
of = intersecting at point ¢. On P and Pj are m lines parallel to j, say
JiyJ2y ooy jm. Also, on P and Pl are m lines parallel to 1:1,,1,,..., 1,.
Make the convention that A, is the plane determined by I. and j,. There
are m? planes of this type, since there are exactly m?2 pairs (r,s) and,
by a simple argument, distinct planes are associated with distinct pairs.
Any plane on P (and on Pr) parallel to # must be an 4,, for some r and s.
Indeed, a plane a on P parallel to = has a trace on Pj (a line of intersection
with P;), say w. w is parallel to j, because if R is a point of % and of j,
then R is a point of n» and of a. But « is parallel to z. Therefore « is parallel
to j. That is, v = j, for some s. Similarly, the trace of a on Pl is I, for
some 7.

Thus, the number of planes on P parallel to = is the total number
of A,; planes (m?) diminished by the number of A4,, planes which inter-
sect z.

Let us consider a plane A;, which intersects =. Suppose § is the trace
it has on =. If B intersects j, say in point 8, then § is on 4;, and on P;.
Then P and 8 are points of 4,, and of Pj, which implies that PS is on
each of these planes, and must accordingly be their (unique) line of in-
tersection. Now the intersection of 4,, and Pj is j,, a line parallel to j.
But PS is not parallel to j since S is a point of j. Thus, the assumption
that g intersects j is incorrect. It is similarly proved that f does not
intersect I. The aim of all this is to show that § is a line parallel to each
of two intersecting lines (I and j). It is then fairly clear that there is
a one-to-one correspondence of A,, planes which intersect z# and lines
of n parallel to each of I and j. There are i* of these lines, and accordingly
t* of the A,, planes which intersect =. We have proved that there are
m2—1* of the A,, planes which do not intersect n. Only A,, planes (of
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all planes on P) can be parallel to &, so the number of planes on P paral-
lel to n is m2—¢*. It should be noticed that this number is positive.

6. We are now in a position to show that no finite B-L k-space
exists (k > 3). We begin with the assumption tlsat such a k-space does
exist.

Accordingly, there exists (in some 4-space) a plane =, a point P
not on x and the 3-space Pr. There is a point @ not on Px, and the 3-space
Qn exists accordingly. Qx = Pn, 80 Qn ~ Pn = n. On @ (and on @Qn)
there is at least one plane a parallel to n (from 5, above), and a is thus
disjoint from Pr. Then for any point 8 of Pz, Sa is a 3-space (distinct
from Pr) having non-empty intersection with Pn. Thus Sa ~ Pz is a plane
8’ of Pn containing S§. With a fixed, each point of Pn thus has associated
with it a unique plane of Pr. The set of planes so determined has the
interesting property that each point of Pr is on exactly one of them.
Let us suppose that some point 7' is on two of these planes, A and B.
Then A is easily seen to be the (unique) intersection of Ta and Pz, as
is B. Thus A = B.

All of this is to demonstrate that the points of Px must be arranged
on a set of pairwise disjoint planes. There are i3 points thusly arranged
on planes (each containing ¢, points); so, for some integer s, st, = 5.
Then st, = t; = ((,—n)(n+m)+n,

(1) 8t; = (n+m)ty+n—n(n+m).
But £, = (n+m)(n—1)+1 = (n+m)n—n—m-+1, or
(2) n—(m+m)n = —t,—m-+1.
Substituting (2) in (1), we get
sta— (n+m)ty = —t,— (m—1);

t, is a factor of all terms except (m—1), 8o ¢, | (m—1). This is impossible,
because t, >m—1 and m—1 > 0. This contradiction proves that no
finite B-L k-space exists if k > 3.

7. Whether a finite B-L 3-space exists or not is an open question
as far as the author has been able to determine. Two necessary condi-
tions have been found, however. They are:

n | (m—1),

ty | m(m—1).

The first is proved by a construction similar to that used to prove
that all points of a 3-space (in a higher space) are on a set of pairwise
disjoint planes. With the argument scaled down one “dimension”, it
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can be shown that the points of a plane (in a 3-space) are on a set of
pairwise disjoint lines. Thus, for some integer s:

sn =ty = (n4m)(n—1)+1,
sm =mn(n+m)—n—(m—1);

n i8 a factor of all terms except m—1, so n | (m—1).

The second is proved by a consideration of the number 2, of planes
on a point (in a 3-space), the number x of planes in a 3-space, and ¢,
and ;. By an argument similar to that used to determine the number
of lines on a plane, the equation

(A) tzm = taz

arises. This equation becomes useful once 2z is known.

To find 2, we first determine the number of lines on a point (in a 3-
space). The points on a 3-space are obviously all on lines on a given point P.
n—1 points other than P are on each of these lines. If there are s
lines on P, then there are s(n—1) points (not P) in the 3-space. Thus
there are s(n —1)+1 points in all in the 3-space. Therefore 8(n—1)+1 = ¢,.
Solving, we obtain 8 = (n+m)(n+m—1)+1.

We use s next to determine 2. Let us consider (in a 3-space) a point

P and a plane n on P. There are n-+m lines on n and on P. There are
("-;m) pairs of (distinct) lines on P and on =, and each pair determines
the plane n. Any pair of lines on P determines a plane on P. With a little

reflection, it becomes obvious that the number of pairs of lines on P
is the product of the number of pairs of lines on a given plane (on P)
and the total number of planes on P. Thus

(o) = (72"
regardless of the choice of P.
Solving:
2 =8(8—1)/(n+m)(n+m—1) = s(s—1)/(s—1) = 8
= (n+m)(n+m—1)41
= (n+m)(n—1)+1+m(n+m)
=t,+m(n+m).
We use this expression for z in equation (A):
t2@ = 132 = l3[t;+m(n+m)],
tax = tgty+tgm(n+m),
3@ = tyty+[(n+m) (33— n)+ n]lm(n+m)

Colloquium XV, 14
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or
L@ = tyly+ (n+m) (t,— n)(m) (n+m)+nm(n+m),
t,x = ty3ty,+ (n+ m)2tym —mn(n+ m)2+ mn(n+m),

or

(B) toax—tgly— (n+m)2tom = —m(n+m)(n)(n+m—1).

It is easy to verify that n(n+m—1) = t,+m—1.
Substituting in the right hand member of (B) yields:

t,2—t3ty— (n+m)*tem = —m(n+m)(t,+m—1)
or
tox—tgt,— (4 m)2tam = —m(n+ m)ty—m(m—1)(n+m).

Obviously ¢, divides m(m —1)(n+m).
Then for some non-zero integer r,

(C) m(m—1)(n+m) = rty = r{(n+m)(n—1)+1],
m(m—1)(n+m) =r(n+m)(n—1)+r.

Hence (n+m)|r, and r = d(n+m) for some non-zero integer d.
Substituting in (C) m(m—1)(n+m) = d(n+m)t,, we get

m(m—1) = dt,.
From this, it follows that ¢,|m(m—1).
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