FASC. 2

FINITE BOLYAI-LOBATCHEVSKY k-SPACES

 \mathbf{BY}

MASON HENDERSON (MISSOULA, MONTANA)

Suppose k, n, and m are integers greater than 1 and S is a set. Further, suppose S_i is a class of non-empty subsets of S (for i = 0, 1, ..., k-1). We will refer to an element of S_i as an i-space. $(S_0, S_1, ..., S_{k-1})$ is a *finite Bolyai-Lobatchevsky* (B-L) k-space if the following axioms hold:

- 1. $S_0 = \{\{a\} \mid a \in S\},\$
- 2. $S_1 \neq \emptyset$.

DEFINITIONS. A is an *i-space* of, or is on, a *j*-space $B \Leftrightarrow A \subset B$ or $B \subset A$. P is a point $\Leftrightarrow P \in S_0$. l is a line $\Leftrightarrow l \in S_1$. a is a plane $\Leftrightarrow a \in S_2$.

- 3. l is a line $\Rightarrow \mathcal{I}$ exactly n points, each of which is on l.
- 4. $l \in S_i \Rightarrow \mathcal{I}P \in S_0 \Rightarrow P \land l = \emptyset \ (i \leqslant k-1).$
- 5. $l \in S_i$ (i < k-1), $P \in S_0$, $P \cap l = \emptyset \Rightarrow \mathcal{I}$ unique $l' \in S_{i+1} \ni l \subset l'$ and $P \subset l'$ (l' may be called lP or Pl; it may be said that l' is determined by <math>l and P).
 - 6. P and Q are distinct points of an i-space $A \Rightarrow PQ \subset A$.
 - 7. $l \in S_{k-1}, f \in S_{k-1} \Rightarrow l \cap f = \emptyset, l \cap f = l, \text{ or } l \cap f \in S_{k-2}.$

DEFINITION. Let l and f be i-spaces, each on some (i+1)-space g. Then l is parallel to $f \Leftrightarrow l \cap f = \emptyset$.

8. If P is a point not on a given line l, then there are exactly m lines on P (and on Pl) parallel to l.

It is the primary purpose of this paper to show that no finite B-L k-space exists for k > 3. We will assume that such a space exists, and arrive at a contradiction. Several theorems applicable to the case k = 3, are proved in the process.

THEOREMS FOR THE CASES k > 3

THEOREM. A plane is determined by any two lines which have exactly one point in common (whose intersection is a single point).

Proof. Each line has n points on it, n > 1, so there is a point on one line which is not on the other. Such a point and the line not contain-

ing it determine a plane. The fact that any two planes so determined are identical is a simple exercise.

THEOREM. There are n+m lines of a plane on any point of that plane. Proof. Given a point P of plane π , \mathcal{A} a line l not on P. There are n lines on P (and on π) intersecting l, and m lines on p not intersecting l.

THEOREM. There are $t_2 = (n+m)(n-1)+1$ points on a plane.

Proof. Let P be a point of plane π . There are n+m lines of π on P and n-1 points (other than P) on each such line. The number of points (not P) on lines on P is thus (n+m)(n-1). That t_2 is actually a count of points of π is then a simple exercise, since any point of π is on a line of π on P. Several counting results follow, with a short justification:

1. The number of lines on a plane, q_2 , is $n+m/nt_2$. This is a result of the relationship $q_2n=(n+m)t_2$. This equation is obtained by counting all possible ordered pairs (P_i, l_j) where P_i is a point on the line l_j [2]. There are t_2 points, each with n+m lines on it. Thus there are $t_2(n+m)$ such ordered pairs. But there are q_2 lines, each with n points on it, giving q_2n ordered pairs. These countings are obviously exhaustive and involve no repetition, so they must yield the same result.

From the equation $q_2 n = (n+m)t_2$, a necessary condition for the existence of a finite B-L plane has been obtained [1]:

$$q_2 n = (n+m)t_2 = nt_2 + mt_2 = nt_2 + m[(n+m)(n-1)+1],$$

 $q_2 n = nt_2 + mn(n-1) + m^2(n-1) + m,$
 $q_2 n = nt_2 + mn^2 - mn + m^2n - (m^2 - m).$

Since n is a factor of each term except (m^2-m) , and all terms are integers, it is obvious that $n \mid m(m-1)$. This, then is a necessary condition for the existence of the plane.

- 2. The number of lines on a plane parallel to a given line of that plane is $i = q_2 n(n+m-1)-1$. Suppose l is the given line. There are q_2-1 lines (other than l) on the given plane. At each of the n points of l, n+m-1 of the lines (not l) intersect l. Thus n(n+m-1) lines other than l intersect l. Lines parallel to l are thus i in number.
- 3. There are $i^* = i (n-1)m$ lines parallel to each of two intersecting (distinct) lines and in the plane determined by those two lines. Let h and j be the lines, with intersection the point P. There are i lines (on the plane of h and j) parallel to j. On each point of h (not P) are exactly m of these parallels. There are n-1 points of h other than P, or m(n-1) of the i lines parallel to j are not parallel to h. This leaves i-m(n-1) lines parallel to both lines j and h (I omit, of course, certain details such as distinctness in these abbreviated proofs). Manipulation yields $i^* = m(m-1)(n-1)/n$.

- 4. $t_3 = (n+m)(t_2-n)+n$ is the number of points on a 3-space. Points of a 3-space are all on the planes which are on a given line of that 3-space. There are n+m planes on a line of the 3-space. To prove this, consider a given line l, and P a point of l. Certainly on P there is a plane π containing no other points of l. Then planes on l intersect π in lines on P. There are exactly n+m lines of π on P, hence exactly n+m planes of the 3-space on l. Points not on l are l_2-n in number for each such plane, so there are l_2-n in points not on l in the 3-space. Adding the l points of l gives the formula for l3.
- 5. Let π be a plane and P a point not on π . Then the number of planes on P (and on the 3-space $P\pi$) parallel to π is

$$m^2 - i^* = m^2 - m(m-1) \left(\frac{n-1}{n}\right).$$

The proof here is somewhat longer. Let l and j be two distinct lines of π intersecting at point Q. On P and Pj are m lines parallel to j, say j_1, j_2, \ldots, j_m . Also, on P and Pl are m lines parallel to $l: l_1, l_2, \ldots, l_m$. Make the convention that A_{rs} is the plane determined by l_r and j_s . There are m^2 planes of this type, since there are exactly m^2 pairs (r, s) and, by a simple argument, distinct planes are associated with distinct pairs. Any plane on P (and on $P\pi$) parallel to π must be an A_{rs} for some r and s. Indeed, a plane a on P parallel to π has a trace on Pj (a line of intersection with P_j), say u. u is parallel to j, because if R is a point of u and of j, then R is a point of π and of π . But π is parallel to π . Therefore π is parallel to π . That is, π is π for some π . Similarly, the trace of π on π is π for some π .

Thus, the number of planes on P parallel to π is the total number of A_{rs} planes (m^2) diminished by the number of A_{rs} planes which intersect π .

Let us consider a plane A_{hg} which intersects π . Suppose β is the trace it has on π . If β intersects j, say in point S, then S is on A_{hg} and on P_j . Then P and S are points of A_{hg} and of P_j , which implies that PS is on each of these planes, and must accordingly be their (unique) line of intersection. Now the intersection of A_{hg} and P_j is j_g , a line parallel to j. But PS is not parallel to j since S is a point of j. Thus, the assumption that β intersects j is incorrect. It is similarly proved that β does not intersect l. The aim of all this is to show that β is a line parallel to each of two intersecting lines (l and j). It is then fairly clear that there is a one-to-one correspondence of A_{rs} planes which intersect π and lines of π parallel to each of l and j. There are i^* of these lines, and accordingly i^* of the A_{rs} planes which intersect π . We have proved that there are m^2-i^* of the A_{rs} planes which do not intersect π . Only A_{rs} planes (of

all planes on P) can be parallel to π , so the number of planes on P parallel to π is m^2-i^* . It should be noticed that this number is positive.

6. We are now in a position to show that no finite B-L k-space exists (k > 3). We begin with the assumption that such a k-space does exist.

Accordingly, there exists (in some 4-space) a plane π , a point P not on π and the 3-space $P\pi$. There is a point Q not on $P\pi$, and the 3-space $Q\pi$ exists accordingly. $Q\pi \neq P\pi$, so $Q\pi \cap P\pi = \pi$. On Q (and on $Q\pi$) there is at least one plane α parallel to π (from 5, above), and α is thus disjoint from $P\pi$. Then for any point S of $P\pi$, $S\alpha$ is a 3-space (distinct from $P\pi$) having non-empty intersection with $P\pi$. Thus $S\alpha \cap P\pi$ is a plane S' of $P\pi$ containing S. With α fixed, each point of $P\pi$ thus has associated with it a unique plane of $P\pi$. The set of planes so determined has the interesting property that each point of $P\pi$ is on exactly one of them. Let us suppose that some point T is on two of these planes, A and B. Then A is easily seen to be the (unique) intersection of $T\alpha$ and $P\pi$, as is B. Thus A = B.

All of this is to demonstrate that the points of $P\pi$ must be arranged on a set of pairwise disjoint planes. There are t_3 points thusly arranged on planes (each containing t_2 points); so, for some integer s, $st_2 = t_3$. Then $st_2 = t_3 = (t_2 - n)(n + m) + n$,

(1)
$$st_2 = (n+m)t_2 + n - n(n+m).$$

But
$$t_2 = (n+m)(n-1)+1 = (n+m)n-n-m+1$$
, or

(2)
$$n-(n+m)n = -t_2-m+1.$$

Substituting (2) in (1), we get

$$st_2-(n+m)t_2=-t_2-(m-1);$$

 t_2 is a factor of all terms except (m-1), so $t_2 \mid (m-1)$. This is impossible, because $t_2 > m-1$ and m-1 > 0. This contradiction proves that no finite B-L k-space exists if k > 3.

7. Whether a finite B-L 3-space exists or not is an open question as far as the author has been able to determine. Two necessary conditions have been found, however. They are:

$$n \mid (m-1),$$

 $t_2 \mid m(m-1).$

The first is proved by a construction similar to that used to prove that all points of a 3-space (in a higher space) are on a set of pairwise disjoint planes. With the argument scaled down one "dimension", it can be shown that the points of a plane (in a 3-space) are on a set of pairwise disjoint lines. Thus, for some integer s:

$$sn = t_2 = (n+m)(n-1)+1,$$

 $sn = n(n+m)-n-(m-1);$

n is a factor of all terms except m-1, so $n \mid (m-1)$.

The second is proved by a consideration of the number z, of planes on a point (in a 3-space), the number x of planes in a 3-space, and t_2 and t_3 . By an argument similar to that used to determine the number of lines on a plane, the equation

$$(A) t_2 x = t_3 z$$

arises. This equation becomes useful once z is known.

To find z, we first determine the number of lines on a point (in a 3-space). The points on a 3-space are obviously all on lines on a given point P. n-1 points other than P are on each of these lines. If there are s lines on P, then there are s(n-1) points (not P) in the 3-space. Thus there are s(n-1)+1 points in all in the 3-space. Therefore $s(n-1)+1=t_3$. Solving, we obtain s=(n+m)(n+m-1)+1.

We use s next to determine z. Let us consider (in a 3-space) a point P and a plane π on P. There are n+m lines on π and on P. There are $\binom{n+m}{2}$ pairs of (distinct) lines on P and on π , and each pair determines the plane π . Any pair of lines on P determines a plane on P. With a little reflection, it becomes obvious that the number of pairs of lines on P is the product of the number of pairs of lines on a given plane (on P) and the total number of planes on P. Thus

$$\binom{s}{2} = \binom{n+m}{2} z,$$

regardless of the choice of P.

Solving:

$$z = \frac{s(s-1)}{(n+m)(n+m-1)} = \frac{s(s-1)}{(s-1)} = s$$

$$= \frac{(n+m)(n+m-1)+1}{(n+m)(n-1)+1+m(n+m)}$$

$$= t_2 + m(n+m).$$

We use this expression for z in equation (A):

$$t_2x = t_3z = t_3[t_2 + m(n+m)],$$

 $t_2x = t_3t_2 + t_3m(n+m),$
 $t_2x = t_3t_3 + [(n+m)(t_2-n) + n]m(n+m)$

 \mathbf{or}

$$t_2x = t_3t_2 + (n+m)(t_2-n)(m)(n+m) + nm(n+m),$$

 $t_2x = t_3t_2 + (n+m)^2t_2m - mn(n+m)^2 + mn(n+m),$

 \mathbf{or}

(B)
$$t_2x-t_3t_2-(n+m)^2t_2m=-m(n+m)(n)(n+m-1).$$

It is easy to verify that $n(n+m-1) = t_2+m-1$. Substituting in the right hand member of (B) yields:

$$t_2x-t_3t_2-(n+m)^2t_2m=-m(n+m)(t_2+m-1)$$

or

$$t_2x-t_3t_2-(n+m)^2t_2m=-m(n+m)t_2-m(m-1)(n+m).$$

Obviously t_2 divides m(m-1)(n+m).

Then for some non-zero integer r,

(C)
$$m(m-1)(n+m) = rt_2 = r[(n+m)(n-1)+1],$$

 $m(m-1)(n+m) = r(n+m)(n-1)+r.$

Hence $(n+m) \mid r$, and r = d(n+m) for some non-zero integer d. Substituting in (C) $m(m-1)(n+m) = d(n+m)t_2$, we get

$$m(m-1)=dt_2$$
.

From this, it follows that $t_2 \mid m(m-1)$.

REFERENCES

- [1] L. Szamkołowicz, On the problem of existence of finite regular planes, Colloquium Mathematicum 9 (1962), p. 245-250.
- [2] E. Witt, Über Steinersche Systeme, Abhandlungen aus dem Mathematischen Seminar der Hansischen Universität Hamburg 12 (1938), p 265-275.

Reçu par la Rédaction le 5. 6. 1965