COLLOQUIUM MATHEMATICUM

VOL. LI 1987 FASC. 1

A CLASS OF 1,-SETS
BY

DAVID GROW (CAHOKIA, ILLINOIS)

1. Introduction. A set E — R, the real numbers, is an I,-set ([1]) if
every bounded complex-valued function on E can be extended to an almost
periodic function on R. It is a classical result of Mycielski [6] and Strzelecki
[8] that any lacunary sequence, 0 <gq, <gq,... where g =inf{q;.,/q;: j
=1,2,...} > 1,is an I,-set. Méla [5] produced other examples of I,-sets by
summing pairs of elements from a sufficiently gapped lacunary sequence to
form what we describe in the next paragraph as a restricted blocked set. In
this 1nvestigation a more general class called blocked sets is examined. These
are shown to be I,-sets when the associated lacunary sequence is sufficiently
gapped.

Suppose A = {q;} is a lacunary sequence. Let K = {k;} be any
subsequence of A, and let A(k;) be any sequence of disjoint subsets of A.
Define the blocked set E = J(k;+A(k), jeZ™; here k+S = {k+s: seS}.
When KnA(k;) = 0 for all j, E is called a restricted blocked set. The
elements of K are called the translators, and the elements of A(k;) are said to
be associated to k;. In general, blocked sets differ significantly from lacunary
sets. Indeed, a blocked set such as {3°4+3% j, keZ*, (i—1* <k <j?) is
often cited as an example of a Sidon set which is not a finite union of
lacunary sets ([2, p. 8], [3, p. 132], [4, p. 25], [7, p. 127)).

The fundamental result of this investigation is the following theorem.

THEOREM 1. Let A = |q;] be a lacunary sequence with lacunary ratio
q > 2. Then any blocked set E formed from A is an I,-set.

- 2. Outline of proof of Theorem 1. We will make use of the following
result [1, Theorem 1].

ProposiTION 1. For a set E < R to be an Iy-set, it is sufficient that
every function on E taking values O and 1 can be extended to an almost
periodic function on R.

Let t=(t,,...,t,) be a vector in R" and let reR. Define tr
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=(tyr,..., 1,r), let ||r|| denote the distance from r to the nearest integer, and
set |it]] = max !||t;)]l: 1 <i < n}. Given two disjoint sets 4, B = R, we will say
that A and B are separated (or more precisely, separated in the Bohr group)
if there exist ne Z*, 6 > 0, and re R" such that ||rx—ry|| = é for all xe 4 and
all yeB. Such a vector t will be said to separate A and B. Proposition 1
immediately implies the next result.

PrROPOSITION 2. For E = R to be an I-set, it is sufficient that for any
partition E = EqUE,, the sets E, and E, are separated.

If g > 6, then Méla showed any restricted blocked set E formed from A
is 1,. His proof consisted of showing that any partition of E = E, U E, could
be separated using a one-dimensional vector. Our proof of Theorem 1 is
based on a subdivision of E into two I,-sets which are separated from one
another. A key tool in this regard is Lemma 9 which is referred to as the
“partition lemma”. It allows us to separate the various pieces of the two I,-
subsets using one-dimensional vectors. The one-dimensional vectors are
produced using two general separating lemmas (3 and 4). These lemmas,
which are proved via nested interval arguments, depend on the parameters v,
0, u, 4, a which are all functions of the lacunary ratio g of 4 and which, in
turn, determine the subdivision parameters ¢, r, s.

Given ¢ > 0, define

N = k+IeE: keK,leA(k), and I/k <e} and M =E\N.
Theorem 1 is then an immediate corollary of the following four propositions.
ProrosITION 3. M is an I,-set.
ProrosITION 4. M and N are separated.
ProrosiTION 5. N is an I4-set.

ProPOSITION 6. Suppose that F = U F, and G = .U G; are subsets of

R. If for each pair of indices (i, j) F; and G are separared then F and G are
separated.

The proof of Proposition 6 is elementary and it is omitted.

3. Proof of Theorem 1. The first two lemmas are preparatory to the
two basic separating lemmas (3 and 4). If reR, let re[a, b] mod 1 denote
the statement ref[a, b]+Z = {t+n: a<t < b, neZj.

Lemma 1. Suppose 0 <y < x and define n = x/y. Let —1/2<a, 1< 1/2
and 0 <d < 1/8. Set

N =minf{neZ* U !0}: n>[2—(1-88)n)/[2(n—1)]..

Let Q be any closed interval of length |Q| = (2N + 3)/(2y).
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(i) There is a closed interval J = Q satisfying |J| = 6/x and such that
tyelo,0+(1/2)Jmod 1 and txe[t—0d,t+d6]mod t for all teJ.

(i) Le¢ 0<v<1/2 and suppose that o6 satisfies (166)/(1+85) <v
If n¢(2—v, 2+v), then there is a closed interval J — Q satisfying the equality
|[J| = 8/x such that tye[o,a+(1/2)—46]Jmod 1 and txe[t—0, t+d]mod 1
for all tel.

Proof. For k,leZ define J(I, +)=[(I+7)/x, (I+1+0)/x], J(, —)
= [(I+1t-9)/x, (I+1)/x], and I(k) = [(k+0)/y, (k+06+ u)/y] where u=1/2 in
case (i) and u =(1/2)—46 in case (ii). If n = 2, then |I (k)| = 1/x for each k
and |Q]|=3/(2y) so J=J(l, +)cl(ky=Q or J=J(l, =)= I(k) =Q for
appropriate k, le Z. Now suppose 1 < n < 2. Clearly we may assume that Q
is a finite interval. Define ko= min'keZ: I(k) = Q! and define |
=min (neZ: (n+1)/x = (ko+0)/y|. If I(ky) contains a point of the form
(n+1)/x where neZ, then define J to be the closed interval J(n, +) or
J(n, =), whichever is contained in Q. Therefore we may assume that
I(koy) contains no point (n+1)/x where neZ. This implies that [(/+1)/x]
—[(ko+ 6+ w)/y] > 0. Define MeZ* by

M = min ime Z: m[(1/y)—-(1/x)] = [+ 1)/x]—[(ko+ 0+ p)/y];.

It is easily verified that M < N and (/+1+ M)/xel(ko+ M). The inequality
implies that |Q| > (2M + 3)/(2y), and hence that I (ko + M) < Q. Define J to be
the closed interval J(I+ M, +) or J(I+ M, —), whichever is contained in
I1(ko+ M).

LEMma 2. Let O<y<x and define n=x/y. Suppose thar —1
<da.b,c.d <1 where 0 <b—a<1,0<d—c <1, and (1 =d+c)(b—a) < n.
Let F=[a,b) and G =[c,d). Let Q be any closed interval satisfying |Q|
2 (1+b—-a)y.

W If n=(1+d—c)/(b—a), then Q contains a closed interval 1 satisfying
| =(d—c)/x such that 1yeF mod | and txeG mod 1 for all tel.

) If (1 +d—c)/(b—u) > n, then Q contains a closed interval I satisfving
Hl = [n(b—a)—(1 —d+¢)]/(2x) such that tye F mod 1 and txeG mod 1 for
all tel.

Proof. Omitted.

LEmMMA 3. Let O <v < 1/2 and suppose that 0 <& < 1/48 is small
enough so rthat (168)/(1+86) < v. Assume that p is large enough so that u
= 5/(20), and let —1/2 <, 0,0, < 1/2. Suppose that A, B, C, and C' are
disjoint, countable subsets of R™ such that AUBUCUC = |q;) has the
Jollowing properties:

(D) gj+1/9;€[3/2, 2—v]U[2+v, x);

(2) gj+2/9; = 1

(3) if ;e CuC, then g;.,/q; > p.

Let Q be any closed interval satisfving |Q| = S/(2q,). Then there is a teQ
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such that .

tq;e[{, {+(1/2)—46]mod 1 for all q;e A,
tq;elo, 0+(1/2—46]mod 1 for all g;€B,
tqje[0—06,0+6]mod 1  for all q;eC,
tq;e[0'—0,0'+6]mod 1 for all q;eC'.

Proof. In Lemma 2 take let us b—a=d-c=(1/2)—46 and
“x, yeAUBUCuUC'. Therefore, since n > 3/2 and 0 < < 1/48, the length
of the interval I guaranteed by Lemma 2 will satisfy

| =2 [n(b—a)—(1—d+c)}/(2x) = 1/(16x) > d/x.

Also, it is easy to see that the maximum value of f(n) =[2—(1-88)n])/[2(n
—1)] for ne[3/2, o) is f(3/2) =(1+240)/2<3/4 <1. Thus, under the
hypotheses of Lemma 3, we may apply Lemma 1 with N =1.

Now we will construct inductively a sequence of integers 0 = N(0)
<N()<N((@2)<... and a sequence of closed intervals Q = I(0) > I(1)
> I(2) >... such that for each positive integer k, for every tel(k), and for
every positive integer j < N (k), (P) is valid. Furthermore the sequences will
be chosen such that |I (k)| = d/qn and qngy+1/dnay = 1 for each k > 1. The
number te()I(k) will have the desired properties.

To start the induction, note that |Q| =|I(0)| = 5/(2q,). The argument
given in cases 1 and 2 of the induction step below shows that there is an
integer N(1)e {1, 2} such that gy;,+:/gnq) =4 and a closed interval
1(1) < 1(0) satisfying |I(1)| = 8/gn(;, such that (P) is valid for all j < N (1) and
all tel(1).

Suppose that k>1 and integers 0 = N(0) <... < N(k) and closed
intervals Q = I(0) > ... o I(k) have been found such that (P) is valid for all
tel(k) and all j < N(k), that |I (k)| = 6/qnw), and that gy +1/qne = -

Case 1. qnu+2/dNa+1 < p- Define N(k+1) = N(k)+2 and note that
property (2) implies

(P)

AN+ 1+ 1/ANk+ 1) = DN+ 3/ANay + 2 > B-

Also note that property (3) implies guy)+, ¢ C U C'. Therefore qygy+ €AV B
and either gug)+2€CUC’ or gyugy+2€6AUB. If gungy+26CUC’, then in
Lemma 1 take X = qngy+2, ¥ = dniy+1> @ = I1(k), 6 ={ or ¢ depending on
whether gqyu,+ €4 or B respectively, and © = 6 or 6’ depending on whether
dnay+2€C or C'. Since qngy+1/qna = 1 = 5/(26), it follows that

1Ol = |I(k)| = 5/‘1N(k) 2 5/2‘1N(k)+ 1-

Lemma 1 guarantees a closed interval I(k+ 1) < I(k) satisfying |I(k+ 1)|
> 0/qngy+2 = 0/dna+1y such that, for all tel(k+1), tqngy+2€[t—0,7
+d]mod 1 and tqyqy+, €0, 0+(1/2)—45]mod 1.
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If gnwy+2€ A U B, then in Lemma 2 take x = qngy+2, ¥ = gna+1> and Q
= I (k). If gygy+1€A, let a={ and b ={+(1/2)—49; if qnyy+,€B, let a=¢
and b=90+(1/2)—46. If qnuy+2€A, let c={ and d={+(1/2)—45; if
dnw+2€B, let ¢ = ¢ and d = ¢+(1/2)—44. Since 6 < 1/48, it follows that

N = dnwy+ 2/dNg +1 = 3/2 > (1+89)/(1 —80) = (1 —d +c)/(b—a).

Since gyu) -+ 1/9xa) = 1 it follows that

1O = (k)| = 5/(2qnay+1) > (1 +b—a)/qnuy+1-

Lemma 2 now yields a closed interval I(k+1) = I(k) satisfying |I (k+1)|

> 0/qnwy+2 such that for all tel(k+1), tqngy+;€[a, blmod 1 and

tqna+2€[c, dJmod 1. Hence the induction step for case 1 is complete.
Case 2. qngy+2/dnay+1 = u. Define N(k+1) = N(k)+1 and note that

ANk + 1)+ 1/Avk+ 1) = DNay+ 2/ ANy +1 = 1.

Also, since qngy+1/dnw = 1 = 5/(20), we have |I (k)| = 6/qngy = 5/(2qn@y+1)-
Suppose gyu+1€CUC. Set 1 =0 if gyay+,€C; set 1 =0 if gyuy+,€C.
Since |I(k)| = 5/(2qnw+1), I(k) contains at least two consecutive points of
the form (/+1)/qnuy+1, Where leZ. This indeed implies that I(k) contains
a closed interval I(k+1) satisfying |I(k+1)| = 6/qnwy+1 Such that tquuy+,
e[t—d,7+0] mod 1 for all tel(k+1). Now suppose gyu+1€A4UB. Set
o ={ if gyum+1€A4; set 0 =g if gngy+,€B. Since |[(k) = 5/(2qngy+1), 1(K)
contains a closed interval [(I+0)/qyay+1, (I+0+(1/2)—45)/gnuy+1], Where
leZ. Thus I(k) contains a closed interval I(k+ 1) satisfying

[T (k+ 1) = [(1/2)—46Y/anur+1 > 0/qng + 1

such that for all telI(k+1), tqnyy+1 €[0, 6+(1/2)—46]mod 1. This completes
the induction step for case 2.

A nested interval argument very similar to that in the proof of Lemma 3
establishes the following result.

LEmMMA 4. Suppose A > 1 and define
w =min{meZ* v {0}: m>(2-A/[2(A-1)]1}.
Suppose that 0 <6 < 1/24 is small enough so that (1+125)/(1—-126) < A, and
that o is large enough so that
a > max {20+ 3)/2, 42w+ 3)/[A(1 —128)—(1+128)]}.

Let A, B, C = R* be disjoint, countable sets such that AUBuUC = {q;} has
the following properties:

(1) q5+1/9; 2 4;
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(2) qj+2/q; 2 2%

(3) if q;= C, then q;, /q; = a:

@) if q;<C and q;/q;-, < 2, then q;_,€B.
Let Q be any closed interval satisfying |Q| > (2w+3)/2g, and let |r;} be
any reual sequence. Then there is a teQ such that

1q;e[(—1/4)+36,(1/4)—36]mod 1  for all g;e A,
19;e[1/4, 3/4]mod 1  for ull q;€B,
tqje[rj—90, r;+6]mod 1 for all q;eC.

Suppose that A is a lacunary set with lacunary ratio ¢ > 2. To show
that any blooked set E formed from A is an I,-set, Lemmas 3 and 4 will be
applied with the following choices of parameters v, 4, 6, u, », and a:

v=min|1/2,q-2] > 0;
/=min!2, g/2} > 1;
Choose 0 < d < 1/48 small enough so that
166/(1+88) <v and (1+120)/(1-120) < 4;
B = 5/(29);
o =min‘meZ* L {0): m=2-A)/[2(A-1)]};
x = max (2w + 3)/26, 4 2w+ 3)/[A(1—128)+(1+128)])}.

In addition, the proof that E is I, will depend on a partition of E based on
the parameters ¢, r, y, and s which follow:

e=min 2”2 u~ % > 0;

2 4 8.
’# , & K

Choose re Z* large enough so that ¢" > max ¢”
7 = min {g/2, (1+e)/(1+q " 'e)} > 1.
Choose seZ* large enough so that 7* > 2.
Write E= M U N where
M = xeE: x =k+1 where keK, le A(k), and l/k = ¢!,
N = (xeE: x=k+1| where keK, le A(k), and l/k < &).
Proposition 3 follows from the fact that M is a lacunary set. The proofs
of lacunarity and the two preparatory lemmas are straightforward and are
omitted.

LEMMA 5. Suppose q;} is a lacunary set where q;. ,/q; = q > 2 for all j.
Let j>12m>0. Then q;/(q,+qm) = q/2> 1.

LemMa 6. Suppose |q;) is a lacunary set with q;,,/q; = q > 2 for all j.
Suppose j =k and | = m.
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() If q;+dx > q1+Qqm, then | <.
(@) If 1 <(q;+9)/(q+9qm) < q/2 then j=1 and m <k.
(iii) (Uniqueness) If q;+q, = q,+q,,. then j=1 and k = m.

LEMMA 7. M is a lacunary set with lacunary ratio greater than or equal
to y=min!q/2, (1+&)/(1+q 'e)).

We now proceed with the partition lemma (Lemma 9), a major tool in
the proofs of Propositions 4 and 5. Let K’ denote the set of translators ke K
which appear in the expression of some ye N as y = k+1 where le A(k). K’ is
a lacunary set with lacunary ratio at least g > 2. Reindexing if necessary,
write K’ = lk;} where kj,,/k; > q. Recall that ¢ >0 and reZ" have been
specified previously and that ¢" >&¢~2 For each 1 <i<r define K(i
= lkj+;: jeZ* U 10}). Each K(i) is a lacunary set with lacunary ratio at
least ¢" and K' =K. 1 <i<r.

For each 1 <i <r let L(i) denote the set of /e A which appear in the
expression of an ye N as y = k+ ] where ke K (i). Note that for a fixed i every
le L(i) is associated with somer translator in K (i) and that L(i) is a lacunary
set with lacunary ratio at least q. Write L(i) = {l;} where l,,,/l; > q. For
each 1 <j < r define L(i, j) = {,+;: ke Z* U [0}}. Each L(j, j) is a lacunary
set with lacunary ratio at least ¢" and L(i)) = |J L(i,j), 1 <j <r, for each i,
1 <i<r. The next lemma is an immedate consequence of the lacunarity of
each L(i, j) and the inequality ¢" > ¢~ 2.

LEMMA 8. Let i and j be integers satisfying 1 <i, j<r. For c¢uch
ke K (i) there is at most one le L(i, j) which satislies ck <1< q"*k.

LeEMMA 9. Fix integers | < i, j < r. There exists a partition of K (i) into
disjoint sets K(i,j, 1) and K(i, j, —1) such that for every le L(i,j), if | is
associated with a translator in K(i, j, ), 6 = +1, then

I¢ U [ek, q7%k).
keK(i,j, o

Proof. For convenience in notation we reindex so that K (i) = |k,!
where k,.,/k, = q". The desired partition of K (i) will be based on an
appropriate partition of the indices ne Z*. Define the function f on Z* in
the following manner. If there is no le L(i, j) satisfying ¢ < I/k, < ¢, define
f(n) = n. If there is an le L(i, j) satisfying & < l/k, < q/?, then, by Lemma 8,
is unique. Also, I is associated with precisely one k,, € K (i); let f(n) = m. Note
that in this case, since k,+/e N, we have l/k, < ¢ Therefore, taking into
account ¢ < l/k,, we have k, < k,. That is, f(n)>n when there is an
le L(i, j) satisfying € < I/k, < q"/%. Note that in any case, f(n) > n for all n.

We will now show that there is a partition of Z* into two disjoint sets
S(1), S(—1) such that if neS(s), 6 = +1, and f(n) > n, then f(n)e S(—oa).
Define the relation R on Z* by nRn' if and only if f*(n) = f'(n’) for some
s, teZ*, where the powers denote composition. It is easy to check that R is
an equivalence relation, and hence Z* is the union of disjoint R equivalence
classes {C,!. For each m we define S(6) ~C,, in the following way. Let n,,
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be the least integer in C,,. Given neC,, let p = p(n) dénote the smallest
nonnegative integer for which there exists a nonnegative integer r
such that f?(n,) = f"(n). (Here we are adopting the convention that f°(i) =i
for all i) With p defined, let g denote the smallest nonnegative integer such
that f?(n,) = f9(n). Put neS((—1)*=9)nC,. Since p and g are unique, it
follows that p—gq is well defined and hence S(—-1)nC,, and S(1)nC,, are
disjoint. Moreover, it is easily verified that if f(n) > n ahd neS (o) N C,, then
f(neS(-ao)nC,,.

It follows that the sets S(o) = J(S(6) " C,), 6 =.+ 1, have the claimed

properties. Moreover, these properties immediately. imply that the sets
K (i, j, 0) = {k,eK(i): neS(o)}, o = +1, satisfy the conclusion of this
lemma.

The separation of M and N (Proposition 4) depends on appropriate
dissections of these two sets. Let i, j, and o be integers satisfying 1 <i, j<r
and ¢ = + 1. In view of the partition lemma there is an induced partition of
L(i, j) into disjoint sets L(i, j, 1) and L(i, j, —1) such that le L(i, j, o) if and
only if | is associated with a translator in K(i, j, o). It follows from the
partition lemma that K (i, j, 6) n L(i, j, 6) = @ and that K (i, j, o) U L(i, j, 0)
is a lacunary set with lacunary ratio at least ¢~!. Define

N(@)={k+leN: keK(i) and le A(k)},
N(i,j,0) = {k+1leN(): keK(i,j, o) and leL(i, j, 0)}.

Since N={JN(),1<i<r,and each N(i) =(JN(,j,0), 1 <j<r,o= +1,
it follows that N is the union of the 2r? sets N (i, j, o) where 1 <i, j < r and
o= +1. By Lemma 7, M is lacunary with lacunary ratio > y. Write M
= {x;} where x;,,/x; > y. Recall that seZ"* has been chosen earlier. For
each 1 <m<s, define M(m) = {xj..: jeZ* U {0]}. Each M(m) is a
lacunary set with lacunary ratio at least y* and M =(JM(m), 1 < m <s. By
Proposition 6 to separate M and N it is enough to separate N(i, j, 6) and
M (m) for each choice of i, j, m, and 6. For the sake of brevity, set K*
= K(i, j, 0), L* = L(i, j, 6), and N* = N(i, j, 6). Also define

M(m, 0, K*) = {xeM(m): k < x <2k for some ke K*},
M(m, 0, L*) = {xeM(m): | <x <2l for some leL*},
M(@m, 1) = {xeM(m): 2k < x < q"*k for some ke K*],
M@m,2)=Mm)\[M@m, 1)uM(m, 0, K*) UM(@m, 0, L*)].
To separate M (m) and N* it therefore suffices to separate N* and each one
of the four subsets in the dissection of M (m). Lemma 10, which follows easily

from Lemma 5, implies that M N K* = M n L* = @, hence each of the four
pieces of M (m) is disjoint from K* U L*.

Lemma 10. Suppose A = {q,} is a lacunary set with g, . ,/q, = q > 2 for
keZ™. Then q; # q;+qn; and if ;> q;+qm, then q./(q;+4q.) = q/2.
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The proof that N* is separated from M(m,1) and M(m, 2) is
straightforward and is contained in the following two lemmas.

LEMMA 11. There is a te R which separates N* and M(m, 1).

Proof. Apply Lemma 4 with the previously specified a and é and with
A=2 A=L* B=K* C=M(m,1), and r; =0 for all j. Since each ye N*
is of the form y = k+1 where ke B and le A, Lemma 4 yields a te R such
that tye[3d,1—-36]mod 1 for all yeN* and txe[—d,0]mod 1 for all
xe M (m, 1). Consequently |jtx—ry|| = 26 for all xe M(m, 1) and all ye N*.

LEMMA 12. There is a te R which separates N* and M (m, 2).

Proof. Apply Lemma 4 with A =L* B=M(m,2), C=K* and r,
= 0 for all j, and with A, é, and a as previously specified.

The separation of N* from M (m, 0, K*) and M (m, 0, L*) depends upon
further dissections of the latter two sets. These dissections require the
following simple result whose proof is omitted.

LEMMA 13. Let xe M and suppose that q; < x < 2q; for some q;e A
= {q,}. Then x = g;+q,, where q,eA and q,<q 'gq;.

If xeM(m,0, K*) and ke K* is the translator such that k < x < 2k,
then by Lemma 13, x = k+z where zeA and z < ¢~ 'k. This induces the
following dissection of M(m, 0, K*). Set A* = A\(K* U L*) and define

M(@m, 0, K* L*) = k+zeM(m, 0, K*): keK*, zeL*, z < q 'k},
M(m, 0, K*, K*) = (k+zeM(m, 0, K*): keK*, zeK*,z < q 'k},
M(m, 0, K* A*) = lk+zeM(m, 0, K*): keK* zeA* z<q 'k].

In a similar manner M (m, 0, L*) can be dissected into

M(m, 0, L*, K*) = {I+zeM(m, 0, L*): leL*, zeK*, z<q '},
M(m, 0, L*, L*) = {I+zeM(m, 0, L*): leL*, zel*, z<q 1},
M(@m, 0, L*, A*) = {l+zeM(m, 0, L*): leL*, zeA*,z2<q 'l].

It follows easily from the partition lemma and the definition of blocked sets
that M(m, O, L*, K*) = 0. Hence to separate N* from M(m, 0, K*) and
M(m, 0, L*), it suffices to separate N* from M(m, 0, K*, K*) and from
M(@m,0, X, Y) for each Xe{K*, L*! and Ye [L*, A*}.

LemMMmA 14. There is a te R which separates N*¥* and M(m, 0, K*, K*).

Proof. Apply Lemma 3 with v, §, and u as previously specified and
with A=B=@0, C=K* C=L*% 06=0 and 6 =1/2. Since each
xeM(m, 0, K*, K*) is of the form x = k+z where k, ze C and each ye N*
is of the form y = k’+1 where k'e C and le C', Lemma 3 yields a te R such
that txe[—20, 26]Jmod 1 for all xeM(m, 0, K*, K*) and tye[(1/2)—20,
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(1/2)+20]Jmod 1 for all ye N*. Therefore |[tx—ty|| = (1/2)—46 > 0 for all
xeM(@m, 0, K*, K*) and all ye N*.

By interchanging K* and L* in the statement and proof of Lemma 14
we have the following resulit."

LEMMA 15. There is a te R which separates N* and M (m, 0, L*, L*).

Next we will prove that N* is separated from M(m, 0, L*, A*) (Lemma
18). Recall A* = A\(K* U L*) = [;} is a lacunary set where z;,,/z; > q for
all j. For each integer 1 < p <r, define

A*(p) = (zjsp jEZT U [0}},
M*(L*, p) = {l+ze M(m, 0, L*, A*): le L*, ze A*(p)},
M*(L*, p, 1) = |l+ze M*(L*, p): le L*, ze A*(p),
I'<z<e Y2 for some l'e L*},
M*(L*, p, 2) = M*(L*, p)\ M*(L*, p, 1).

LemMmA 16. There is a te R which separates N* and M*(L*, p, 1).

Proof. Let A*(p,1)=\zeA*(p): I' <z <& Y?I' for some l'eL*).
Apply Lemma 3 with v, 4, and u as previously specified and with 4 = L*,
B=0,C=K* C=A4%*p.1). {=(-1/4)+25, 6 =0, and 0 = 1/2.

LEMMA 17. There is a te R which separates N* and M*(L*, p, 2).

Proof. Apply Lemma 4 with the previously specified 2 and é and with
+t=2 A=K* B=A*(p\A*(p, 1), C = L* and r; =0 for all j.

Since M(m, 0, L*, A*) =) M*(L*, p), 1 <p<r, and each M*(L*, p)
= M*(L*, p, 1) U M*(L*, p, 2), the next result is a corollary to Lemmas 16
and 17 and Proposition 6.

Lemma 18. N* and M(m, 0, L*, A*) are separated.
LEMMA 19. N* and M(m, 0, K*, A*) are separated.
Proof. Analogous to that of Lemma 18.

Next we focus on the final step in the separation of N* from M (m): the
proof that N* and M(m, 0, K*, L*) are separated (Lemma 21). As defined,
each xe M(m, 0, K*, [*) is of the form x =k+1! where ke K*, le L*, and
I<q 'k. We assert that | is the translator of x. Otherwise, k is the
translator. Then & < I/k by virtue of the definition of M. But then ¢
< Ik < q~', which contradicts the partition lemma. Let T denote the set of
translators of the elements in M (m, 0, K*, L*), and let U denote the set of
elements e such that z is associated with some translator ye T and
y+ze M(m, 0. K*, L*). We have just shown that T < L* and U < K*. Note
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that this implies T~ K* = 0. Let k, <k, <k; <... be an enumeration of
T o K*. Write Ao = M(m, 0, K*, L*) and A, = N*. Then we have AU A4,
=J(k,+W,), neZ*, where W, < A(k,) is uniquely determined by this
expression and where T, U, k,, W, satisfy:

(1) T< L* and U < K*;

(2) If k,e T, then W,c U and k,+ W, c Ay;

(3) If k,eK*, then W, c L* and k,+ W, c A,;

4 If n,meZ* and n# m, then W,~n W, = 0.
The separation of A, and A; depends on the following partition result. Its
proof, which is derived from properties (1) through (4) and the definition of
K* and L*, is omitted.

Lemma 20. There exists a partition of K* U L* = (J('k,) UW,), neZ™,
into four disjoint sets F, F,, F,, F3 such that for each neZ* if k,+ W, = A,,
then k,eF, and W,c F, where either s+t =2I(mod4) or s+t=2l
+ 1 (mod 4).

LeMMA 21. There is a te R which separates N* and M(m, 0, K*, L*).

Proof. Apply Lemma 4 with /4, 2, and ¢ as previously specified and
with A=B= 0 and C=K*UL* Let C=FyuF,UF,UF; be the
partition of C that Lemma 20 yields. Since C is a lacunary set with lacunary
ratio at least ¢!, we may write C = !q;} where g;.,/q, > ¢”'. Define a
sequence |r;} taking the values 0, 1/4, 1/2, 3/4 by setting r; = i/4 if and only
if g;eF;. Lemma 4 yields a teR such that for all jeZ*, tq;e[(i/4)
—0d, (i/4)+d]1mod 1 where g;c F;. Therefore Lemma 20 implies that txe
[—25,20]U[(1/4)=26, (1/4)+26]Jmod 1 for all xe A, = M(m, 0, K*, L¥)
and rye[(1/2)—24, (1/2)+26] u [(3/4)— 20, (3/4)+25]mod 1 for all ye A,
= N*. Consequently |rx—1ry|| =>(1/4)—46 >0 for all xe M(m, 0, K*, L*)
and all ye N*.

The proof of Proposition 5 is based on the decomposition N
=N(G,j,0), 1 <i,j<r, 6= +1. We will show that any two distinct
pieces in the dissection of N, N (i, j, o) and N(m, p, t), are separated (Lemma
24). Thus by Proposition 6 the proof of Proposition S is reduced to being
able to separate any two disjoint subsets of a given N(i,j, g). That this
separation is possible is the content of the next lemma.

LemMma 22, Let 1 <i,j<rand 6= +1. If N(i,j,0) = E,UE, is any
partition, then there is a te R which separates E, and E,.
Proof. Each xeN(i,j, o) is of the form x = k+! where ke K(i, j, o)
and leL(i,j., o). Define
%= leL(i,j,0): k+leE, for some keK(i,j, o)},
L% =!leL(i,j. o) k+leE, for some keK(i,j, o).
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Apply Lemma 3 with v, §, and pu as previously specified and with A =B
=0, C=K(,j,o0)ully, C'=L%, 6=0, and ' = 1/2.

We now begin the proof that N(,j,6) and N(m,p,1),
@, j, o) # (m, p, 1), are separated. For convenience in notation set N§
=N(G,j,0), K§i=K(,j,0), Ly=LG,j,0, Ntf=N(mp,1), Kt
= K(m, p, 1), and L} = L(m, p, 7). The basic strategy of the proof is to
obtain an appropriate dissection of N§ and show that Nt and each piece of
N3 are separated. With this end in mind, we make the following definitions.

L5(0) = Ly n(KY v L) = Ly nKY,
L%(1) = {lel¥: x <l<e Y%x for some xeK¥ U L%},
L%5(2) = L5\(L5(0) L Ly(1)),
K3(0) = K§ n(KT L LY),
K&(1) = keK$: x <k <e '?x for some xeK¥ U L%},
K3(2) = KE\(KE(0) L KE(1)).

For each ordered pair of integers (u, v) where 0 < u, v < 2, define

D(u,v)={k+le N§: keK§(u), le L(v)).
It is clear from the definitions that N¥ = (JD(u,v), 0 < u, v < 2.

LemMA 23. NY and D(u, v) are separated for all 0 < u, v < 2.

Proof. There are six one-dimensional vectors which separate Nt from
D, 1), D(1,0), D(1, 1), D(0, 2), D(2, 0), and D(2, 2). They are obtained by
routine applications of Lemma 3, and the details are omitted.

Next, there is a t € R? which separates N* and D (0, 0). Note that D (0, 0)
is the union of the two disjoint sets

D(0,0,K¥) ={k+1eD(0,0): keK§ KT}, le L5 KT},
D(0,0, %) = (k+1eD(0,0): keK§n L, le Ly nKT).

To see that N¥ is separated from D(0, 0, K¥), apply Lemma 3 with v, 4, and
u as previously specified and with A=B= 0, C=K}, C'=L%, 0 =0, and
6 = 1/2. To see that N¥ is separated from D(0, 0, LY), first observe that each
element of N¥ is of the form k+ ! where ke K¥ and /e L%, while each element
of D(0, 0, L%) is of the form y+z where ye K§ N L% and ze LN KY. Let T
denote the set of translators of the elements in D(0, 0, L%), and let U denote
the set of elements ze A such that z is associated with some translator ye T
and y+:zeD(0, 0, L%). Then we have T < L} and U < K¥}. Let k, <k, <...
be an ordering of TuK} and write A, =D(0, 0, L), A, = N}. Then
AoU A, = U (k,+W,), neZ™, and properties (1) through (4) in the paragraph
preceding Lemma 20 are satisfied. Consequently, Lemma 20 holds for
UCk,) UW,), neZ*, above. Likewise the proof of Lemma 21 with
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D(0, 0, L%) in place of M(m, 0, K*, L*) and Nt in place of N* shows that
there is a te R which separates N¥ and D(0, 0, L%).

Third, there is a teR? which separates N¥ and D(l,2). To each
ye K¥(1) there corresponds some we K* UL% such that w<y <g 2w,
Define

K§(1,K¥) = {yeK3(1): w<y<e Y?w for some weK?}},
K§(1, %) = {yeK§(1): v <y <& Y2p for some veL})}.
Note that D(1, 2) = D(1, K%, 2)u D(1, L%, 2) where
D(1,K}, )= ly+zeD(1, 2): yeK§(1, K¥), ze 1%(2)},
D(1, 1%,2)=!y+zeD(1,2): yeK§(, L%), ze L(2)).

- To see that NT is separated from D(1, K%, 2), apply Lemma 3 with v, 4, and
u as previously specified and with A=K}, B=L§(2), C=L%, C
=K3(1,K?}), { =(—1/4)+26, o =(1/4)+ 25, and 6 = 0’ = 0. Likewise, to see
that Nt is separated from D(1, L%, 2), apply Lemma 3 with A =L%, B
=152, C=K¥, C=K§(1,L%), and v, é, u, ¢, @, 6, and @' as above.

Finally, an argument completely analogous to that of the previous
paragraph establishes that there is a te R? which separates N¥ and D(2, 1).
This finishes the proof of Lemma 23.

Since N§ = UD(u, v), 0 < u, v < 2, the next result is a consequence of
Proposition 6 and Lemma 23.

Lemma 24. If (i,j,0)#(m,p,1), then N§=N(i,j,0) and N?
= N(m, p, 1) are separated.

Lemma 24 concludes the proof of Proposition 5 ‘and hence Theorem 1.
Suitable technical modifications in the proof of Theorem 1 yield a similar
result for restricted blocked sets.

THEOREM 2. Let A = \q;] be a lacunary set with lacunary ratio

q >(1+\/§)/2. In addition, suppose there exists a v >0 such that
12—(g;+1/9;)| = v for all j. Then any restricted blocked set formed from A
is an I,-set.

The requirement in Theorem 2 that consecutive elements in A have ratio
bounded away from 2 is essential to our methods (cf. condition (1) of Lemma
3) and perhaps is a true singularity in the theory.
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