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ON THE EXISTENCE OF COMMUTATIVE BANACH-LIE
GROUPS WHICH DO NOT ADMIT CONTINUOQUS UNITARY
REPRESENTATIONS

BY
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0. One of the basic tools in the theory of groups is the investigation of their
unitary representations. For locally compact groups this is particularly fruitful
owing to the existence of sufficiently many irreducible continuous unitary
representations (the theorem of Gelfand-Raikov).

For groups which are not locally compact the situation becomes more
complicated. For instance, W. Herer and J. P. R. Christensen gave in [2] an
example of a Polish vector space which, when considered as a topological
group, admits no non-trivial continuous unitary representations.

In this note we exhibit that the same pathological situation can occur in the
case of commutative Lie groups (we use terminology and definitions from
Bourbaki [1]). Suitable examples of groups locally isomorphic to various Banach
spaces are given in Theorems 4, 5 and 6.

The author is indebted to W. Wojtynski for helpful discussions and
suggestions.

1. Let H be a complex Hilbert space, and let G be a topological group.
A representation of G in H is a homomorphism T: G — GL(H) into the
group of automorphisms of H. A representation T is weakly (strongly)
continuous if it is continuous in the weak (strong) topology on GL(H).

A representation T is called unitary if all the operators T(g), ge G, are
unitary. A one-dimensional unitary representation is called a character. For
unitary representations the notions of weak and strong continuity coincide.

A representation T is called faithful if it is injective, and trivial if T(g)
=idy for all geG. ' . _

A topological group G is called bounded if for each open V31 there is
an n such that V" =G. If G = E/K, where K is a subgroup of a normed
space E, then G is bounded iff there is an r > 0 such that E = K +rB, where
B is the unit ball in E.
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Let F denote the space of all real measurable functions on (0, 1), with
the topology of convergence in measure (as usually we do not distinguish
two functions equal almost everywhere). F is a separable Fréchet space with
F-norm given by

1
|f1 = § min(1, |f(t})dr.
0

For a given real normed space E let F(E) denote the Fréchet space
of all continuous linear operators A: E— F with F-norm given by
|A| = sup {|Aul: |lull < 1}.

2. ProrosiTION 1. Let K be a subgroup of a real normed space E. If the
quotient group E/K admits a non-trivial continuous character, then there exists
an feE*, f #0, such that f(K) c Z.

This is a simple fact and we leave it without proof.

ProposITION 2. Let K be a subgroup of a real normed space E. If the
quotient group E/K admits a non-trivial strongly continuous wunitary
representation in a separable Hilbert space, then there exists an operator
AeF (E), A #0, such that for each uec K the function Au assumes only integer
values.

This is an immediate consequence of Theorem 5 from [2].

ProPoSITION 3. Let G be a bounded commutative topological group
satisfying the first axiom of countability, and let T be a weakly continuous
representation of G in a Hilbert space H. Then T is equivalent to a unitary
representation.

Proof. Let (g,) be any sequence converging to zero in G. For each
ue H the sequence (T(g,) u) converges weakly to u. In particular the set of its
terms is bounded. Hence, in view of the Banach-Steinhaus theorem, we have

sup {IT(gl: neN} < x.

Since g, — 0 was arbitrary and G has a countable basis of neighbourhoods of
zero, there is a neighbourhood V of zero such that

L=sup{||T@): geV} < x<.
From the boundedness of G we have G — V" for a certain n. Then
sup{IT@)ll: geG} < I < .

On the commutative group G there i$ an invariant mean, and it is
enough to repeat the standard argument for compact groups.

3. THEOREM 4. Let E be an infinite dimensional resl normed space, for
which the space F(E) is separable. Then there exists a discrete subgroup
K c E such that the quotient group E/K admits no non-trwzal weakly
continuous representations in Hilbert- spaces.
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Proof. Let X be the set Z+ (1/4, 3/4> — R, and let m be the Lebesgue
measure on (0, 1). It is a matter of technique to prove the existence of a
positive constant ¢ such that for every 0 # Ae F(E) we have

(1) W,+c '|A"'B=E,
where B is the unit ball in E, and W, — the set
{ueE: m({te(0, 1): Au(t)e X}) > c|Al}.

The separability of F (E) implies the separability of E*. Therefore E itself
is separable, so we can choose a set {b,}=; dense in E, and another set
{An} 2, A, # 0, dense in F(E).

We shall build by induction a sequence (a,)2%, in E. By (i), there is an
a,e W, such that

1<layl €271 A,7 +1.
After finding a,, ..., a,,-, choose a,,eb,+ B such that
d(a,,, spanfa,, ..., a;,—}) = 1.
Then, using (i) again, choose a,,.,€W, , such that

d(asn+y, spania,, ..., az,)) =1
and
”azn+ 1“ < 2c” ! IAn+ ll— ! + 19
and so on.
The sequence (a,) constructed in this way satisfies the following con-
ditions:

(i) d(a,, span{a,: k <n}) > 1
(iii) llaza-4ll < 27147+ 1,
(iv) a-1€W,,,
(v) a,eb,+B

forn=1, 2, ... Let K be the group generated by the vectors a,, n =1, 2, ...
From (ii) it follows easily that |ju—uv|| > 1 for any different u, ve K; hence K
is discrete. Next, for any given ue E we can find b,eu+ B, and then

ueb,+B =ay,+(b,—a;,)+B< K+B+B

by (v). Hence E = K+2B and E/K is bounded.

Suppose now that E/K admits a non-trivial weakly continuous
representation T in a Hilbert space H. According to Proposition 3 we may
assume that T is unitary. Then T is a Hilbert sum of cyclic representations,
and we may assume that T itself is cyclic. From the separability of E/K it
follows now that H is separable. Then, in view of Proposition 2, there 1s a
non-zero Ae F(E) such that im Au < Z for all ueKk.
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Let x be the largest integer < 2c¢™'|A4|"'+2. Since {4,} is dense in
F(E), we can find an n for which |4,| = |A| and |4,— A| < c|A|/4x. Then (iii)
gives

I(An—A)GZn—ll < xI(An_A)x—laZn—ll < xIAn_AI < CIA|/4

On the other hand, from (iv) and the definition of W, it follows that

there is a subset S < (0, 1) such that m(S) > c|A|, and (4,a;,-,)(S) = X.
Then
(A4,—A)az,— 4| = I min (1, |4,az,-(t)— Aay,—, (t))dt
5

> [di/4 > c|A|/a,
S

because Aa,,.; assumes integer values a.e. This contradiction completes the
proof.

In a similar way, using transfinite induction, we can prove that if
an infinite dimensional real normed space E has the property wght E
= wght F(E) (it is always true that wght E < wght F(E)), then there exists a
discrete subgroup K < E such that the group E/K admits no non-trivial
weakly continuous representations in separable Hilbert spaces.

Using the same method, with some simplifications, we can prove the
following

THEOREM 5. Let E be an infinite dimensional real normed space such that
wght E = wght E*. Then there exists a discrete subgroup K — E such that the
group E/K admits no non-trivial continuous characters.

It is known that the spaces F(c,) and F(I?), 2 < p < o0, are separable,
while F(/P), 1 < p <2, are not. Similarly, the spaces (co)* and (I’)*, 1 <p
< x, are separable, and (I')* is not. However, in this special case there is a
more straightforward method of constructing exotic groups than using
Theorems 4 and 5.

For each ne N let e, be the sequence (d,,) ;, Where J,, is the Kronecker
delta. Let then (a,),>, be an arbitrary sequence dense in the real space I,
such that a, =0 and

(vi) a,espanie, ...,e,.,} for n=>2.

For the group K generated by the vectors a,+e,, n=1, 2, ..., we have the
following

THEOREM 6. K is a discrete subgroup in each of the real Banach spaces c,
and I°, 1 < p < . The corresponding quotient groups co/K and I°/K are
commutative, connected, bounded, separable, infinite dimensional Lie groups.
The groups co/K and I’P/K, p > 1, do not admit any non-trivial continuous
characters. The groups co/K and IP/K, p > 2, do not admit any non-trivial
weakly continuous representations in Hilbert spaces.
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Proof. It follows immediately from (vi) that K is discrete in /? and in
¢o- Therefore co/K and I?/K are infinite dimensional Lie groups. It is obvious
that they are commutative, connected and separable. We shall prove that
they are bounded.

Given any uel? (uecy) we can find an n such that |lu—a,|| < 1, because
{a,} is dense in I', and therefore also in ¢, and all /?. Then

”u_an_en” < |Iu—an“+”en” < 2.

From this we have K+ 2B = I? (K+ 2B = c,), where B is the unit ball, and
the boundedness is proved.

Suppose now that the group E/K, where E is ¢, or I?, p > 1, admits a
non-trivial continuous character. Then by Proposition 1 there is a non-zero
f € E* such that f(K) < Z. For a certain ae E we have f(a)¢ Z. Let (a,) be a

subsequence of (a,) converging to a. Then the sequence
fle) =f(a,+e)—f(a)

does not converge to zero, which is impossible in /”, p > 1, and in c,.
Now let us suppose that the group E/K, where E is the space c, or 7,

p > 2, admits a non-trivial weakly continuous representation in a Hilbert

space H. By Proposition 3 and the boundedness of E/K, T may be assumed

to be unitary. Since E/K is separable and T is a Hilbert sum of cyclic

representations, we may assume that H is separable. Then Proposition 2

gives the existence of an Ae F(E), A # 0, such that imAu = Z for ueKk.
Since A4 # 0, there is an ae E such that the set

S ={t: (Aa)(e Z+ (2/5, 3/5))
has a positive measure. Let (4, ) be a subsequence of (a,) converging to a.

The sequence (Aq,,) converges in measure to the function Aa. Using the
Egorov theorem we may assume that Aa, — Aa uniformly on S. Hence

(Aa, )()e Z+<1/4,3/4> for teS and neN.

All the functions A(a, +e,) assume integer values only, therefore
(Ae, ) ()€ Z +<1/4, 3/4) for teS. In particular

(vii) - I(Ae, ) (1)) = 1/4 for teS and neN.

Put f,=n""?A4e, for n=1,2,... Each subsequence of the sequence
(n~'%e,) converges in E. Therefore, in view of the continuity of 4, each
subsequence of (f,) converges in F. Hence ) f? <o ae., by the Orlicz
theorem (see [3], Lemma). But, in view of (vii), the series ) f,? is divergent
on S. This contradiction completes the proof.

It is not difficult to show that the group I'/K admits sufficiently many
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continuous characters, and that each of the groups I?/K, 1 < p < 2, admits a

faithful strongly continuous unitary representation in a separable Hilbert
space.
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