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EXTREME POINTS OF THE UNIT CELL
IN LEBESGUE-BOCHNER FUNCTION SPAOES

BY
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The extremal structure of the unit cell in Cz(X), the Banach space
of continuous functions on a compact Hausdorff space X into a Banach
space B with the supremum norm, has received considerable attention
in recent years. For these and related results see the papers of Blumenthal,
Lindenstrauss and Phelps [1], Phelps [12] and Peck [11]. As pointed
out in [1] and [12], part of the motivation to the problem stems from
an attempt to characterize the extreme operators on a Banach space
B into C(X), the space of real-valued continuous functions on a compact
Hausdorff space X with the usual supremum norm. A similar problem
of interest is to characterize the extreme operators on Banach spaces
L,(X, 2, u) into a reflexive Banach space. From the representation the-
orems for such operators in Dunford and Schwartz [6] it is easily verified
that the problem mentioned above is related to the extremal structure
of the unit cell in Lebesgue-Bochner function spaces. For a detailed
account of these spaces we refer to Bochner and Taylor [2], Edwards
[7], Hille and Philips [9], Bogdanowicz [3] and Dinculeanu [5].

With the above motivation we consider in this paper* the problem
of characterizing the extreme points of the unit cell in Lebesgue-Bochner
function spaces L%, 1 < p < oo, which are abstract generalizations of the
classical LP-spaces. The case when F is finite-dimensional has been consi-
dered in an earlier paper, Sundaresan [14].

We adhere to the following notation throughout the paper: (X, 2, u)
is a fixed measure space with X a locally compact Hausdorff space, 2" the
o-ring of Borel sets in X and u a regular positive measure. For a defini-
tion of these terms see Halmos [10]. As there is a certain divergence in

* This work was supported in part by Scaiffe Faculty Grant administered by
Carnegie-Mellon University. Some of the results in this paper have been presented
at the Conference on “Set-Valued Mappings, Selections and Topological Properties
of 2X” held at SUNY, Buffalo, U.S.A., (May, 1969).
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the terminology concerning vector-valued measurable functions, we wish to
point out that the terminology adopted here is the same as in Chapter 8,
Edwards [7]. Thus if ¥ is a locally convex vector space, then a function
f: X — F is measurable if f has the Lusin property, i.e. if K is a compact
subset of X, then for each ¢ > 0 there exists a compact set C = K such
that u(C ~ K) < ¢ and the restriction of f to C, f|C, is continuous. The
definition of a vector-valued measurable function in [5] differs from the
above definition. However, if the range of f is metrizable, then either
of the definitions implies the other. If F is a Banach space, then a function
f: X —> F is measurable if it is measurable with respect to the strong
topology on E. A function f: X - E is w- (w"-) measurable if f is measurable
with respect to the weak (weak® topology if appropriate) on E. If E is
a Banach space, the linear space of measurable functions f on X to E
such that the function x — |[f(2)|? (1 < p < oo) is y-summable is denoted
by L% . After the usual identification of functions agreeing a.e. it is verified
that L% is a Banach space when equipped with the norm

11 =] [ 1) au]™.
X

Likewise L% is the Banach space of essentially bounded measurable
functions f on X to E with the norm

Ifll = ess sup||f ()]
TeX

We denote the norm in L% (1 < p < oo) and the norm in E by the
same symbol || | as there is no occasion for confusion. U% is the unit
cell in L% and Ug (Sg) is the unit cell (unit sphere) in E. If f is a measurable
function, S; is the set {z|f(x) # 0} and P(f) is the measurable function
defined by P(f)(z) = f(x)/llf(x)| if veS; and P(f)(x) =0 if x¢S;. If A is
a set, X, is the characteristic function of A and if C is a convex set,
ext C is the set of extreme points of C.

Before proceeding to the main results we deal with the simpler case
of Ly and then state a preliminary theorem of considerable use in the
subsequent discussion.

PROPOSITION 1. A function feLy is an extreme point of Uy if and
only if there exists an atom A <= X and a point ec Ext Uy such that

X (x)e

o) =+ = a4

for x a.e.

Proof. As a first step we verify that if there exist two disjoint
measurable sets €y, Cy = §; of positive measure, then f is not an extreme
point of Uy. If such a pair of measurable sets exist and ¢ = C, U C,,
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let ;,0<1,<1 (i =1,2) be the numbers defined by
[lIf@lfu = 4 [lIf@ldu.
c

1

Let g; (¢ =1, 2) be the functions defined by
9 = fXx.c+ A+ 4)fXe,+ 1A —4)f X,

where j = 2if4 =1 andj = 1if ¢ = 2. It is verified that g, Ly, |lg;| = 1,
f =1(9:+9.)/2 and g, # g,. Thus f¢ExtUg. ‘

From the observation in the preceding paragraph and the regularity
of the measure u it follows that if feExt Uy, then S, does not contain
any measurable set M of positive measure, u(M) << u(8;). Since ||f(z)|
is summapble, it is verified that §; is an atom. Hence there exists a real
number ¢ and a vector ee¢F such that f(zr) = ¢X sy (x)e for x a.e. Since
feExt Uy, it is verified that ¢ = 4-1/u(8;) and eeExt Ug. This completes
the proof of the “only if” part. Since the “if” part is easily verified, the
proof of the proposition is complete.

THEOREM 1. If 1 < p < oo, then a function feLf with ||f]| =1 is an
extreme point of U% if and only if

P(fX )

Twany® <40

for every Borel set M such that 0 < u(M)<< oo and M < §;.
Proof. Before proceeding to the proof of the “only if” part let us

recall the well-known Clarkson inequalities, Clarkson [4], for L%, where
R is the real line. If g,, g, L%, then

g1+ gallP + 1lg:— g2lI” < 2P [llgalP+ llgalP]  if 2<p < o0
and

191+ g2l + llg1— g2l < 2[llgulP + llgal" 1%~

if 1< p<2 and ¢ — —2 .

p—1

Using these inequalities, it is verified that
(#) if f=(g1+92)/2 and |fl =1 =ligll, then [f(@) = lg;(@)| a.e.

1 =1, 2, where |f|] = 1.

Let M be a Borel set such that M = §8; and 0 < u(M) < co. Let
g=[u(M)]""?P(fX,,). If possible, let g ¢ Ext U%. In view of (*) there exist
g;« U such that g = (9,+9.)/2 and |lg(2)|| = llg.()| = llg=(=)|| a.e. Thus
if h;,i = 1,2, are the functions defined by &;(x) = [u(M)]""|f ()| g;(x)
if e M and h;(z) = f(x) if ®¢ M, then f = (h;+hy)/2 and |k = 1.
Hence f¢ExtU%, completing the proof of the “only if” part.
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Conversely, if feL:, ||fl =1 and f¢Ext UL, then there exist g;,e U%
such that f = (¢9,+¢,)/2 and g, # ¢g,. Hence from (*) if tollows that
If @) = llg:(@)|| a.e., ¢+ =1,2, and there exists a measurable set M < §,,
0 < u(M) < oo, such that for all we M, g,(x) #* g,(x). It is verified that

P Xy) _ 1 [P(.«AXM) P(gzxM)]
()17 — 2| w(MI? " (w1 |

Since the functions appearing in the right bracket are verified to
be in U%, it follows that

P(fXy)
[ (M)]Y?

completing the proof of “if” part.

Remark 1. A characterization of extreme points of Uz similar to
the one provided in the preceding theorem is evident for if feExt U%,
then ||f(#)|| =1 a.e. The verification of this assertion is as follows. If
possible, let feExtUz and M be a Borel set, 0 < u(M) < oo, such that
for ze M, ||f(x)|| < 1. Since u is a regular measure, there exists a compact
set C =« M of positive measure such that f|C is continuous. Hence f(C)
is a compact set in the interior of Ug. Thus there exists a vector V in Ug
(choose for V any vector with 0 < ||V||< 1 — Max|f(x)|) such that

xeC

¢ExtU%

If(z)+ V|| <1 for all zeC. Let now g;, 2+ =1,2, be the functions
(f+ V)X, +fXxc, where V is the constant function with {V} as the
range. It is verified that ||g;| =1, f = (9:+9,)/2 and g, # ¢g.. Thus
feExtU%, completing the proof of the assertion.

Next we proceed to the main results. We study the case when Z is
a separable conjugate Banach space (in particular, when F is a separable
reflexive Banach space) and show that in this case the extreme points
in U%,1< p < oo, can be related to the extreme points in Ug.

First recall some facts required in the proof of the next theorem.

(a) The w*-topology relativised to the unit cell of E, where E is
a separable conjugate Banach space, is metrizable. Moreover, a metric
d on Uy can be defined to satisfy the additional requirement
d(p,q)<|p—gq| for all p,qeUgz. For if E = B*, then B is also
a separable space. Thus there exists a countable dense subset {z,},., of
the unit cell Uy with respect to the norm topology relativised to Ugp.
Let us define for p, qe Ug,

1
dp,q = o 1P (®,) — q(2,)].

nz=1
Then d has the required properties. See in this connection Theorem
1, p. 426, Dunford and Schwartz [4].
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(b) Concerning set-valued mappings, we recall a definition and
a useful theorem. Let X, ¥ be two topological spaces and 2¥ be the
set of all closed non-empty subsets of Y. A function F: X — 2% is called
upper semi-continuous (u.s.c.) if the set {x|F(x) = G} is open in X for
all open sets Gin Y. If X, Y are two topological spaces, a functionf: X - Y
is said to be Borel measurable if f~'(G) 2 for all open sets G in Y, where
2 is the o-ring generated by open sets in X. We state a theorem due to
Engelking [12] in a form suitable for our purpose here.

THEOREM (Engelking). Let X be a paracompact perfectly normal to-
pological space and (Y, d) be a separable metric space which is d-complete.
If F: X > 2% is @ w.s.c. map, then there exists a Borel measurable function
f: X — Y such that f(x)eF (x) for all xeX.

THEOREM 2. Let E be a separable conjugate Banach space and1 < p << oo.
If feL%, |Ifll =1, then feExtU% if and only if f(x)/||f(x)|eExtUg for
x a.e. in S;. If p = oo and feLg with ||f]| = 1, then feExt Uz if and only
if f(x)e ExtUg for x a.e.

Proof. Let 1 < p < oco. If feL%, |fll =1 and f(z)/||f(x)||e ExtUg for
x a.e. in §;, then it is verified that if M is a Borel set, 0 < u(M) < oo
and M < 8, then [u(M)]"Y?P(fX,)<ExtU%. This completes the proof
of the “if” part.

To complete the proof of the “only if” part we start by noting that
since Uz is a compact convex metrizable subset in w*-topology, the
set ExtUg is a G, subset of Uy (see proposition 1.3, Phelps [13]). Hence
Ext Uz is a Borel set in the norm topology of E. Now let fe Ext UL and
if possible let f(x)/|f(z)|| ¢ Ext Uy for x a.e. in §;. Since ExtUz is a Borel
set in Ug, it follows that there exists a measurable set M < 8; of positive
measure such that f(x)/||f(#)| ¢ExtUg. Let g(x) = f(x)/|f(x)|| on S; and
g(xz) = 0 otherwise. Since g is a measurable function and u is a regular
measure, there exists a compact set ¢ =« M, 0 < u(C) < oo, such that
g|C is continuous. Hence ¢g(C) is a compact set in S;. We note that for
xze(C there exist p,, q¢,¢8g5, P, #4¢,, such that g(z) = (p,+¢,)/2. For pos-
itive 6 let C; be the subset of C of points x such that there exist p,, ¢,¢Sg
with ¢(z) = (p,+¢,)/2 and d(p,, ¢;) > 6, where d is the metric defined
in (a) preceding the statement of the Theorem. We verify that C; is a Borel
set in X, in fact a closed subset of the compact set C. For let {t,|neD}
be a net in O, such that ¢, —~% for some teC. Let ¢(t,) = (p.+4.)/2,
a(p,, 9,) = 6, for some p,, q,<¢Sg. Since (Ug, d) is a compact metric space,
there exist convergent sequences {pni}, {qni} in {p,} and {q,} respectively.
From the continuity of g it follows that g(¢) = (p+¢)/2 if Py, ~>p and
qn, ~ q- Further d(p, , ¢,} > o implies d(p, q) > 6. Thus teC; and C; is
a closed subset of C. By considering the sequence of disjoint Borel sets
Cyym ~ Cyjm+y) for integers m > 1 and noting that 0 < u(0) < oo it follows
that there exists a positive number k™', a compact set Cy = ;-1 = O,
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0 < u(Cy) < oo, and two functions g;: C,— Sg such that for all x¢C,,

g1(2) + ga2(x)
2

g(w) = and  |lg;(x)— g2 ()] > d|g.(®), g2(2)) = &7

Thus there exists a function F': g¢(C,) - 2UVE with the w*-topology
on F relativised to Uy such that for all £eg(C,), F (&) is the non-empty
w”*-closed set of points a in 8y satisfying for some BeSy the condition
& = (a+B)/2 and |la—B| > d(a, f) > k~'. With the norm topology on
E relativised to g(C,) we proceed to verify that F' is a u.s.c. map. Let
@G be an open set in (Ug, d) and let G, = {¢|F (&) = G}. Suppose that
teg(C,) and that there is no neighbourhood N of ¢ such that F(n)c @
for all 7eN. Thus there exists a sequence {t,} in ¢g(C,), t, = t, F(t,) ¢+ G
for all » > 1 which in turn implies the existence of a sequence {t.} in
Sy with t.eF(t,) ~ Q. Considering a sequence {£} in Uy such that
. (tn+ 1)
" 2
follows that there exists a subsequence {t},i} in {t;} converging to some
point ¢ in the space (Ug, d) such that for some point t*e Uy, t = (' +%)/2
and d(t', $*) > k~'. Thus t'«F(t) = G. Since G is a neighbourhood of ¢,
there exist t}%.eG leading to a contradiction. Thus ¥ is a u.s.c. map. It is
verified that ¢(C,) and (Ug, d) satisfy the conditions on X and Y respecti-
vely in Engelking’s theorem stated earlier in the paper. Hence there
exists a Borel measurable function k: ¢(C,) - (Ug, d) such that k(&) eF (&)
for all £¢g(C,). Let ¢': 0y~ Uy be the function defined by g¢' = hog.
It is verified that ¢' is a w*-measurable function. Since E is a separable
Banach space by the Theorem 3.5.5(2) on p. 74 in [9], it follows that
¢' is a measurable function. Further, from the definition of F and the
choice of h it is inferred that there exist ¢°(x)eSg such that

_ g(@)+g' =)
- 2

, d(tL,3) > k™', by standard compactness arguments it

g (@) and [l () —g* ()] > d(g* (@), ¢ (x))* = B~
Since g, ¢* are measurable, the function ¢* is also measurable and

g10, = (¢*+¢°)/2. Now defining the functions f*: X - Ug, i = 1,2, by
the equations fi(x) = ¢g*(x) if x<C, and fi(z) = g(x) if veX ~ C,, it is
verified that fieU%, g = (f*+77)/2 and f' # f%. Thus ¢g¢ExtU%, which
in turn by Theorem 1 implies that f¢ExtU% contradicting the choice
of f. This completes the proof of Theorem 2 if 1 < p < oo.

" The case p = oo is similarly dealt after noting the remark following
Theorem 1 and the details are not supplied.

COROLLARY. If E is a separable reflexive Banach space and feU%,,
1< p< oo, and ||f|| =1, then feExtUE if and only if for = a.e. in §,,
F@)/If (@)l e Ext Ug.
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The corollary follows from the preceding theorem since a separable
reflexive Banach space satisfies the condition on EF in the theorem.

We proceed to the case where F is a reflexive Banach space not
necessarily separable. All subspaces in the rest of the paper are closed
subspaces. If f is a measurable function, then the range f is said to be
essentially in the set M if f(x)e M a.e.

THEOREM 3. If E is a -reflexive Banach space and 1< p < oo, then
a function fel% with ||f]| =1 is an extreme point of U% if and only if
f(@)/|lf(x)|e ExtU,, a.e. in 8; for every separable subspace M essentially
containing the range f.

Proof. Suppose feExt UL and M is a separable subspace essentially
containing the range f. If necessary, redefining f on a set of measure
zero, it can be assumed that fe U%. Since U, < Uy, clearly feExtUY;.
From the corollary to the Theorem 2 it follows that f(x)/|f(x)|eExtU;;.
Conversely, let there be a separable subspace M of E essentially containing
the range f such that f(z)/||f(x)||¢ExtU,, a.e. in §; is false. Since it can
be assumed that feL%; and since |f|| = 1, it follows from the Corollary
to Theorem 2 that f¢ExtU?%,. Since U%, « U%, f¢ExtU%. This completes
the proof of the Theorem.

We next turn to some special Banach spaces ¥ and study the extremal
structure of U%. We adopt the following notation. If Y is a compact
Hausdorff space, then C(Y) is the Banach space of continuous real-valued
functions on Y with the supremum norm. If I" is a discrete space, Cy(I")
denotes the Banach space of real-valued functions vanishing at oo with
the supremum norm. In what follows p is either a real number, 1 < p < oo,
or p = oco.

THEOREM 4. If E = C(XY) or Co(I') and fe L%, |If| = 1, then feExtUY,
if and only if f(x)/||f(x)|eExtUyg for x a.e. in §;.

Proof. Let £ = C(Y). Let feExtU%. Let g = p(f). Since ecExtU,;
implies |e(x)] =1 for all xeX, it follows that ExtU, is a closed
subset of Uy in the norm topology on E. Thus if f(z)/|f(x)|eExt Ug
for # a.e. in S, is false, then there exists a Borel set M < §;, u(M) > 0,
such that for all z¢ M, g(x) ¢ ExtU;. Hence, by the regularity of u there
exists a compact set C =« M, 0 < u(C), such that for all xeC, g(x) ¢ ExtUy
and ¢|C is continuous. Let K = ¢g(C). Thus K is a compact subset
of §;. Let FeK. Since F¢ExtUg, there exists a tpe¢Y and a positive
number & such that —1-+42& < F(lp) <1—2¢. If F,eK such that
|F—F\| < ¢, then — 1+ e5p < F,(lp) < 1—¢p. Since K is a compact set,
there exists a finite set {F;}, ;<, = K such that if By, is the subset of K
defined by {F|||F— Fy|| < ef,}, then {Bg }, 1 <i<m, is a covering of K.
Since ¢ is a continuous function, the family {§~'(Bf)}, 1 <i<n, is
a finite family of compact subsets of C covering C. Hence one of the sets
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97'(Br,) has a positive measure. For definiteness let u(g~'(Bp, )) > 0.
With é = er;, it is verified that GeBF implies —1+ 6 < G(tg, )< 1—4.

By the theorem of Ascoli-Arzela on compact sets in C(Y), it fo]lows that
there exists an open neighbourhood U of tFio such that for all £¢U and
for all G‘BFio’ —1+6/2 < G(§)<1—4/2. Since Y is a compact Haus-
dorff space, there exists a continuous function F,: Y — [0, /2] such
that F, vanishes on ¥ ~ U and F;1(6/2) is a non-empty subset of U.
Let g¢;, ¢ =1,2, be the functions on X to C(Y) defined by g,
= Xy ~T°+ Xp(9+ F,), where T = 9_1(BFio) and g, is the same as g,
except that the constant function F, is replaced by —F,. It is verified
that g; e UE and ¢ = (9, + ¢,)/2 9, # ¢.- Thus g ¢ExtU%. Hence it follows
by Theorem 1 that f¢ Ext U% thus completing the proof of the “only if” part.

The proof of the “if” part is the same as the proof of the corresponding
assertion in Theorem 2. This completes the proof of the Theorem when
E = (C(Y). The case where F = C,(I") is dealt similarly.

Remark 2. It is easily verified that the set Ext Uy = @ if B = C,(I).
Thus if follows from Proposition 1 and the preceding theorem that
ExtU; =@ if 1<p < oo and F = C,(]).

We proceed to indicate an application of some of the results in the
paper. More specifically, we apply the corollary following Theorem 2 to
determine the extreme operators in the unit cell of B(¥,, E,), the Banach
space of operators on F, to E, with the usual supremum norm when E,
is the function space L,(X, 2, u) and E, is a separable reflexive space.
The measure space (X, 2, u) here is the same as the one considered in
the introduction in addition to being o-finite. We recall the following
representation theorem for such operators which is an easy corollary
of the Theorem 10, p. 507, [6], after noting that every operator on a Banach
space to a reflexive Banach space is weakly compact:

THEOREM 5. If B(L,, E) is the Banach space of operators on the
Sfunction space L,(X, X, u) into a separable reflexive Banach space E, then
the map =n: B(L,, B) - Lz, defined by

Tf = [ #(T)(2)f(®)du(x), where TeB(Ly, ),
X

18 an isometric isomorphism onto L% .

From the corollary to Theorem 2 and the preceding theorem we
obtain the following characterization:

THEOREM 6. An operator TeB(L,, E) with |T|| =1 48 an extreme
point of the unit cell of B(L,, E) if and only if =n(T)(x)eExtUg a.e.

Before proceeding to the conclusion we wish to make a remark
concerning the hypothesis on the measure space (X, 2, u).
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Remark 3. As already mentioned in the introduction, (X, X, u)
i3 a topological measure space. More specifically, X is a locally compact
Hausdorff space. However, this hypothesis is not too restrictive for by
a well-known theorem of Kakutani (see for example Theorem 2, p. 372,
[6]) if 1< p < oo and if (¥, 2, u;) is a finite measure space, then there
exists a topological measure space (X, 2, u) of the type considered here
such that L% (Y, 2|, ;) is isometrically isomorphic with I%,.

In conclusion it might be mentioned that the characterization of
ExtU% when F is an arbitrary (even separable) Banach space has not
been dealt here. This case and generalizations of the results presented
here to the class of Orlicz-Bochner function spaces with applications
to the theory of operators and approximation will be dealt elsewhere.’

I wish to express my gratitude to the referee for helpful comments.
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