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1. Professor Marczewski urged me several times to write a survey
paper on this subject and finally I am trying to satisfy his wish. Let
me recall on this occasion that Marczewski often urged his students and
colleagues to publish their work. At the meetings of the Polish Mathe-
matical Society he would often ask how and when the speaker intended
to publish his results. The activity of young mathematicians in Wroclaw
was greatly stimulated by his constant friendly interest in their work
and his encouragement to overcome this final, but for many not the
least, difficulty of writing it down.

Marczewski’s efforts bring to my mind other thoughts. One hears
critical remarks about the “explosion of science”, the increasing diffi-
culty of following the development of mathematics and the irrelevance
of many papers. There are mathematicians who advocate restraint in
publication and waiting for the maturity of results. But is it not clear
that the great number of publications is just a function of the number
of working mathematicians, and with its growth, even the best mathema-
ticians can appreciate only a smaller and smaller fraction of what is being
published® This does not mean that the quality of mathematical publi-
cations has decreased. On the contrary, I believe that with the modern
standards of proof and clarity this quality has increased. Also, if weighed
against the oceans of nonsense which are published on our planet, almost
all mathematical papers seem outstanding. More than once I have been
bothered by the unavailability in the literature of various results and proofs
which at one time had been circulated in the form of preprints, and
then got stuck somewhere before appearing in print. Thus the views
mentioned above are wrong and the process of publication is much too
slow and often too cumbersome. As to the reader, it remains his task
to select what he can learn and enjoy. Clearly, we prefer more degrees
of freedom rather than fcwer (also in a library).

2. In this paper measure will mean finitely additive measure with
values in [0, oo]. I want to outline some applications of well-known
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methods for proving the existence of various measures. Banach con-
structed a measure m over the Boolean algebra P(#%) of all subsets of
the plane #?* which extends the ordinary 2-dimensional measure A? of
Lebesgue and is invariant under isometries of sets. Marczewski realized
that Banach’s construction can be modified so as to yield another measure
4 with the following properties. Like m, u is defined over P(#?) and is
invariant under isometries; u(4) = A?(4) if 1®(boundaryd) =0 and
H#(M) =0 for all M = R* which are meager, i.e.,, of the first category.
He also asked whether a measure with the same properties over the algebra
of subsets of #® having the property of Baire is possible. This problem
has some interesting equivalent formulations (see [13]) but it remains
unsolved. Finally, Marczewski also asked [10] if extensions of Haus-
dorff’s a-dimensional measures A similar to Banach’s extension m of
A® are possible. We shall see in the sequel that the answer is affirmative.
We shall also provide proofs of the existence of a u as above with the
additional property
n(8[4]) = a,u(4)

for every similarity s of #°, where a, is the square of the magnification
factor of s. We shall also prove the existence of extensions of A satisfying
a similar equation where a, is the a-th power of the magnification coef-
ficient of s. Finally, refining a theorem of [16], we shall prove the existence
of a measure u over the algebra L, of all Lebesgue measurable subsets
of #" such that u(#") =1 and u(s[4]) = u(4) for all A e L, and all
similarities 8 of #™.

For various other results and references related to the material of
this paper see [12].

3. Amenable groups. One of the most interesting concepts in this
theory is that of an amenable group. A group @ is called amenable if there
exists a universal (i.e., defined over the Boolean algebra P (@) of all subsets
of @) finitely additive measure m which is left invariant (i.e., m(ad) = m(4)
for all a €@ and A 2 @) and such that m(@) = 1. Felner [6] gave the
following purely algebraic characterization of amenability:

(F) @ is amenable iff for every ¢ > 0 and every finite non-empty set
H 2 @ there evists a finite set B* o G such that

|aE*A E*|
(1) —sts fo‘r auaEE,

where A is the symmestric difference of sets and |X| is the number of ele-
menis of X.

The sufficiency of this condition is easy to establish by a generalized
limit argument. The necessity is much harder (see [6]). It is easy to
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prove (see [6] and [6]) that the class of amenable groups has the
following properties:

3.1. It is closed under subgroups and homomorphisms.

3.2. If all finitely generated subgroups of a group G are amenable,
then G 18 amenable.

3.3. The extension of an amenable group by an amenable group s
amenable.

3.4. Al finite groups and all Abelian groups, and hence by 3.3 also
all solvable groups, are amenable.

3.5. An amenable group has a measure m as above which i8 moreover
both left and right invariant (i.e., invariant).

The next statement is related to the work by Morse [11] and is
proved without using the awiom of choice.

3.6. If G i3 countable and satisfies Folner’s condition (F) and B is
a countable Boolean algebra of subsets of G containing G which is invariant
(i.6.,, if AecB and ge@, then gA € B and Ag € B), then there exvisis an
invariant measure m over B with m(G) = 1.

Proof. We let g,, 9,, ... be a sequence containing all elements of @.
First we shall prove that for every finite subalgebra B, = B there exists
a measure m, over B, such that m,(4) = my(B) whenever A, B € B,
and there exists a g € @ such that g4 = B. By compactness it is enough
to prove that for every N, ¢ > 0 there exists a measure m, over B, with
m,(@) =1 such that

whenever there exists an n < N such that g, A = B. We let
E=1{g"gr" - 95"}

[ANE*|
|E*|

where E* satisfies (1). Then (2) follows from (1) and it is obvious that
m, is a measure over B, with m,(G) = 1.

Thus by compactness of the space [0,1]% we get the required
measure m, for any finite subalgebra B, = B. Now, by compactness of
the space [0, 1]B, we get a left invariant measure m’ over B with
m'(G) = 1.

Now let B* be the least Boolean algebra of subsets of G such that
B < B*, B* is invariant and 8,,,€ B* for any A € B and any rational
numbers 8, ¢, where

and we pub

m,(A) = for all A € B,,

8400 = {9: 8 <m (4g) <1}.
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Since B and @ are countable, it is clear that so is B*. Then, by the
same procedure as above, we construct a left invariant measure m* over
B* with m*(@) = 1. Then, since m’ < 1, for all A ¢ B we can define

m(4) =i m’(4g)m* (dg)
G

or, more precisely,
. Nk
m(4) = lim Z Z’m* (8 4, 1/m, (e+1)/m) *
n—>00 %=0

By routine arguments we can prove that m is a measure as required
in 3.6.
Finally, we get another well-known fact:

3.7. If G has a free non-Abelian subgroup, then G i8 not amenable.

We are left with the well-known open problem whether there exists a
non-amenable group G without free non-Abelian subgroups. In view of the
work of Adjan, perhaps the free group in the variety defined by the
equation 2% = ¢ with two free generators a and b (which is infinite, see
[1]) is such a group, and the set E = {a, b} violates (1).

There exists another remarkable characterization of amenability
which follows from a more general theorem of Tarski ([21], Corollary
14.14). We say that a set A = G has a paradoxical decomposition if there
exists a sequence of disjoint sets A4,,...,4,,,B;,...,B, in A and of
elements a,,...,a,, b;,...,b, of G such that

Acadv...va,4, and A cbBv...Ub,B,.

Tarski’s theorem implies that

3.8. G is amenable iff G itself does not have paradoxical decompositions.

Remark. Another of Tarski’s results (a generalized version of the
Cantor-Schroder-Bernstein theorem) implies that if there exists a para-
doxical decomposition of A, then there exists one with the additional
property
A,V...V4,UBU... UB,=a,4,U... Va, A4, =b,B,U... Ub,B,= A.

It is obvious that if G has a paradoxical decomposition, then it is
not amenable, and this is the natural way of proving 3.7. Namely, using
an idea which goes back to Hausdorff, one proves directly the following
result (see [18], Section 10, where a simple proof and some references
are given):

3.9. If G has a free nmon-Abelian subgroup, then G has paradoxical
decompositions (even ones with m =n = 2).
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Concerning the non-amenability of SO(3) see Section 7.

Let us mention a property of groups, stronger than amenability,
which grew out of some work of von Neumann, Lindenbaum and Tarski.
Following Rosenblatt [20], a group @ is called supramenable if for every
non-empty set A < G there exists a left invariant measure m over the
algebra of all subsets of G such that m(4) = 1. (For relating this defini-
tion with the definition given in [20] see Theorem 5.3 in the sequel.)
Tarski’s result mentioned above ([21], Corollary 14.14) implies also that

3.10. G is supramenable iff no non-empty set A = G has paradoxical
‘decompositions.
It is proved in [20] that

3.11. Every solvable group without a free nmon-Abelian subsemigroup
18 supramenable.

In particular, all nilpotent groups are supramenable since nilpotent
groups are solvable and have no free subsemigroups (see [9]).

3.12. If a group G has a free non-Abelian subsemigroup, then @ s
not supramenable.

Proof. Let 8 < G be a free subsemigroup with two free generators
a and b. Then 8 has a paradoxical decomposition. In fact, we have a8 < S,
b8 < 8, aSNnb8 =0, S < a'al and S < b~'b8.

For example, the group of transformations ax+b (where a > 0) of
the real line R and the group of transformations ax+b (where |a| = 1)
of the complex plane are solvable but have free subsemigroups (of power
2%), and hence are not supramenable. This leads to various constructions
related to the proof above (see e.g. [15], Theorem 3 and references
therein). The concept of a group of transformations of a space has been
generalized by Tarski [21] so as to permit the treatment of isometries
of subsets in a metric space such that the isometries do not necessarily
extend to the whole space. (See, e.g., [21], Theorem 16.3, for such an exten-
sion of 3.11 in the case of Abelian groups.)

All this constitutes of course a rather special chapter of measure
theory and group theory, while the main stream deals with countably
additive Borel measures (see e.g. [6], [16] and [19]).

4. Extensions of measures. Let B be a Boolean algebra, and R
a subring of B, i.e., a subset of B closed under Boolean join and Boolean
subtraction. Let 4 be a measure over R with values in [0, oo].

4.1. EXTENSION THEOREM. u can be extended to a measure u* over B.
This is a well-known fact. In [8] (see also [14], footnote (13)) Luxem-
burg proves the equivalence of 4.1 and related statements with the Hahn-
-Banach theorem without using the axiom of choice. The reader who
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wants just a straightforward proof of 4.1 is advised to prove first that
for every finite Boolean algebra B, < B the measure u restricted to
B,NR can be extended to B,, and then to use the compactness of the
space [0, co]® (the Tychonoff theorem), as in the proof of 3.6.

An interesting fact about Theorem 4.1 is that, already for the
algebra of all subsets of a countable set, it cannot be proved without
using the axiom of choice for uncountable families of sets; this result
is due to R. M. Solovay (see [17], §6). Of course, if B is countable, then
4.1 does not require the axiom of choice.

5. Invariant extensions of measures. Let now G be a group of
automorphisms of a Boolean algebra B, and R < B a G-invariant subring
of B, i.e., such a subring that g(a) e R for every a e R and g € G. Let
h be a homomorphism of @ into the multiplicative group of positive reals.
Finally, let 4 be a measure over R satisfying

p(g(a)) = h(g)u(a) for all aeR and ge@.

5.1. INVARIANT EXTENSION THEOREM. If G 18 amenable, then there
exists a measure u* extending u to all of B such that

(3) p*(9(a)) = h(g)pu*(a) for all acB and ge@.
Proof. Let 4’ be any extension of 4 over B (Theorem 4.1). Let 8 be

the set of all a € B for which there exists a b € R with a < b and u(b) < oo.
Let us prove the legitimacy of the definition:

if a¢s,

pr(a) =y  u (g(a)) :
ifael
where m is any invaria.nt measure over P(@) with m(@G) =1 (it exists
because G is amenable). Now, the integral above exists if for each a € §
the function f(g) = u’(g(a))/h(g) is bounded. To check this let b e R,
a < b and u(b) < co. Then

fg) = wlo@) _wlo®) _ ple®) _
h(g) h(g) h(g)
and thus f is bounded.
It remains to check that u* is a measure over B, that it extends
4 and that it satisfies (3). The first two of these properties are obvious
and the last is obvious if a ¢ S. If a € § and ¢t € G, then

w(b),

' (gt(a)) #'(9(a))
* = -z - dg) =
u* (t(a)) 7a) m(dg) J W m(dg)
u'(g(a)

= h(t) m(dg) = h(t)u*(a).
(¢]

h(g)



INVARIANT MEASURES. I 3156

5.2, Applications. 1. Let B be the Boolean algebra of all subsets
of the plane #*°, @ the group of similarities of %2, a > 0, h(g) the a-th
power of the magnification factor of g, u the a-dimensional Hausdorff
measure in #% and R the algebra of u-measurable sets. It is well known
that @ is solvable, and hence amenable. Thus Theorem 5.1 applies, and
it solves the problem of Marczewski stated in Section 2.

2. Let B and @ be as above, let h(g) =1 forallg €@, R = {@, #%},
#(0) = 0 and u(#*) = 1. Then by 5.1 we get a strange bounded invariant
measure over P(4°). For a partial extension of this result to #" see
Section 6.

For other examples see [2].

For supramenable G we have the following

5.3. THEOREM. If G is a supramenable group of automorphisms of
a Boolean algebra B, and a € B, a # 0, then there exists a G-invariant measure
p over B (i.e., u(g(x)) = u(x) for all g € G and « € B) such that pu(a) = 1.

Proof. We let 8 be the Stone space of B, and thus we can regard
the elements of B as subsets of § and the elements of G as permutations

(homeomorphisms) of 8. Pick a point p € a. Then let m be a left invariant
measure over the algebra of all subsets of G such that

m{ge@: g(p) ea} =1;

by supramenability of G such a measure m exists. Now for every ¥ € B
we let

u(@) =mige@: g(p) e z}.

It is clear that u is a measure over B and that u(a) = 1. Also, u is
invariant since, by the left invariance of m, for any f e G we have

plf@)) =mige@: g(p) ef(®)} =mige@: f~'g(p) ex}
=m{fge@: g(p) ex} =m(f{ge@: g(p)ex}
=m{g eG: g(p) e a} = p(a).
We have also the following extension theorem without any special
assumptions on @G.

5.4. THEOREM. If @ i3 a group of automorphisms of a Boolean algebra B,
I i8 an ideal in B, and m 18 an invariant measure over I (i.e., if ael,
g€G and g(a) eI, then m(a) = m(g(a))), then there evists an invariant
measure u over B exiending m.

Proof. For every z ¢ B we put

u(z) = sup {Zm(g,(w‘)): n<w,g;€@q, 7, <2y oA =0

t=1

for ¢ #j, g:(=,) el}.
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All the required properties of x are visible.

5.5. Remark. A theorem similar to 5.4 is also true for countably
additive algebras, ideals and measures (see [17], Theorem 6).

6. The Marczewski measure. Let B, G, h, R, and u be as in 5.1.
Let I be an ideal in B and assume that I is also G-invariant, i.e., g(a) e I
whenever a € I and g € @. Moreover, let u(a) = 0 for all a e RN 1.

6.1. THEOREM. If G is amenable, then there exists a measure u* sat-
i8fying the conclusions of 5.1 and, moreover, u*(a) = 0 for all a € I.

Proof. Let R’ be the ring generated by RUI. Then for each a € R’
there exists a decomposition

a =rAi, wherc reR and iel;

here A is the Boolean symmetric difference (also called the Boolean addition).
We put u’(a) = u(r) for all a € R’. It is clear that u’(a) does not depend
on the choice of r and . Now the quintuple B, G, h, R’, x’ satisfies the
assumptions of 5.1 and x'(a) = 0 for all a € I. Thus 5.1 yields 6.1.

6.2. Application. Let B = P(%?), let G be the group of all similari-
ties of &2, h(g) the square of the magnification factor of g, R the ring
of subsets of #2 whose boundaries have 2-dimensional Lebesgue measure 0,
u the Lebesgue measure restricted to R, and I the ideal of meager sets
in 242 Then Theorem 6.1 applies and the resulting measure u* vanishes
on meager sets. As mentioned in Section 2, Marczewski was the first
to prove the existence of such measures.

7. What about #"% Our applications do not extend to #3, since the
group SO(3) of rotations of #2 around the origin is not amenable. In fact,
it has free non-Abelian subgroups (see [4] for the best proof of this fact,
and [3], [7] for its “ultimate” refinements). Moreover, the existence of
paradoxical decompositions of the surface of a sphere in %#° makes it
impossible to extend those applications. The same is true for #" with
n > 3. Nothing is known about the possibility of invariant universal
extendibility of Hausdorff a-dimensional measures in £" when » > 3 and
a < 2. As it is easily seen, for a > 2 they are not possible for the same
reasons as before.

What if we replace universal extendibility (to the algebra of all
subsets of #") by extendibility to some smaller Boolean algebra, e.g.,
the algebra L, of Lebesgue measurable sets in #" or the algebra B, of
sets having the property of Baire in #"% For L, we have an excellent
invariant measure, the Lebesgue n-dimensional measure; but we can still
ask whether there exists a bounded measure like that in 5.2.2. The answer is
affirmative and it will be the object of our next theorem. As for B, with
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n > 3 nothing is known; this is the problem of Marczewski stated in
Section 2 (see [12] and [13]).

Now we shall prove a refinement of Theorem 2 of [16].

7.1. THEOREM. There exists a measure u over L, which 18 invariant
under similarities and u(R") = 1.

Proof. It is proved in [16] that there exists a measure u, over L,
which satisfies uo(f[X]) = uo(X) for all X € L, and all isometries f of 2",
Let G be the group of all magnifications of #” from the origin. Then G is

Abelian, and hence amenable. Let m be a universal invariant measure
over P(@) with m(@) = 1. For all X € L, we put

p(X) = [ po(gIX)m(dg),
G

which is permissible since u, < 1. We claim that 4 is a measure satisfying
the requirements of 7.1. All is obvious except perhaps the invariance of u
under all similarities of #”. Evidently, x is invariant under @. On the other
hand, if f is an isometry of £", then, for any g € @, gfg~' is also an isometry
of ®#". Therefore,

to(af[X]) = po(afg~"'9[X]) = po(9(X]),

w(gf[X]) = p(X).
Since every similarity of #” is of the form gf, where g € @ and f is
an isometry, 7.1 follows.

Acknowledgment. I am indebted to A. P. Morse for many stimulating
letters and conversations on the subject of this paper.

and hence

Added in proof. For related work on countably additive measures see
R. B. Chuaqui, Measures invariant under a group of transformations,
Pacific Journal of Mathematics 68 (1977), p. 313-329.
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