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Introduction. Let S be a closed, bounded, convex subset of a Banach
space X. The scalar field may be real or complex, except where it is explicitly
specified. If the difference set S—S has an interior point, we will call S a
quasiball. Then, given a positive integer n, we say that S is an n-quasiball if,

whenever x,, x,, ..., x, are interior points of $(S—S), then ﬂ (x;+9) is

nonempty. These definitions depend only on the topology of X and remain
invariant under any equivalent norm that X might be given. This is the
crucial difference between our quasiballs and the pseudoballs defined in [3].

‘A set S is symmetric about a point x if S—x =x—S. Any symmetric
convex body, in particular a closed ball, is obviously an n-quasiball for all n.
To exclude such trivial examples, we will call a quasiball proper if it is not
symmetric. It is easy to show that every quasiball is a 2-quasiball. What is
not at all obvious is that every 3-quasiball is already an n-quasiball for all n.
However, this should not surprise the reader familiar with M-ideals.

Let Y be a Banach space containing X (isometrically). We recall that X
has the n-ball property in Y if, whenever Bl, ..., B, are closed balls in Y, with

X N B; nonempty for each i, and int ﬂ B; nonempty, then X N ﬂ B; is
i=1 i=1
nonempty. It turns out that every subspace with the 3-ball property has

already the n-ball property for-all n. This result is due to Alfsen and Effres
[1], who called such subspaces M-ideals. Actually, Alfsen and Effros gave a
different definition of M-ideals, and the characterization in terms of balls is a
theorem of theirs. For simpler proofs of this, see [2], [9] or [12]. If there is a
projection P: Y — X satisfying the identity

Iyl = max {|[Pyll, lly — Pyll},

then X is said to be an M-summand in Y. Elementary calculations show that
every M-summand is an M-ideal.

Following [3], we say that X can be a proper M-ideal if there is a
Banach space Y containing X, so that X is an M-ideal, but not an M-
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summand, in Y. It is obvious that any space X is an M-summand in some
larger space Y. The standard example of a proper M-ideal is c¢,, considered
as a subspace of c¢. Our main result shows that all proper M-ideals are, in a
sense, built up from this example.

The relationship between quasiballs and M-ideals depends on some
elementary approximation theory, which we develop in the next section. In
the main section, we will show that a Banach space can be renormed to be a
proper M-ideal if and only if it contains a proper 3-quasiball. (It follows, for
example, that any 3-quasiball in /;, or in a reflexive space, is automatically
symmetric.)

Behrends and Harmand [3] showed that every proper M-ideal contains
an isomorphic copy of c,. We will establish an isomorphic converse to this.
To be precise, we will show that every Banach space containing c, also
contains a proper 3-quasiball.

A subspace which has the 2-ball property is called a semi-M-ideal. A
semi-M-ideal will be called proper if it is not an M-summand. (Thus, proper
M-ideals are also proper semi-M-ideals.) Examples of semi-M-ideals which
are not M-ideals are now well known, at least in real Banach spaces ([1],
Theorem 5.9). It is curious that no such example has been found in a complex
Banach space. In the last section, we shall make a few remarks about this
problem.

This work was done while the author was visiting the Free University of
Berlin, and owes much to the stimulation of the work-group there. Indeed,
many of the ideas used here appeared originally in [3].

Preliminary results. If A, and A, are subsets of a Banach space, we will
write 4; ~ A, to mean that 4, = 4, and int 4, = int A,. Let U(-) denote
the closed unit ball of a given space. We say that X is normed by a quasiball
S if U(X)~4(5—S). Obviously, any quasiball in a real Banach space
becomes norming, under an equivalent norm for X. If in addition there is a
Banach space Y containing X, and a point y in Y such that S < B(y, 1), the
closed ball with centre y and radius 1, then we say that X is well-normed by
S. This property is only interesting for complex Banach spaces.

LEmMA 1 ([11], Lemma 5.3). Let X be a real Banach space, normed by a
quasiball S. Then X is well-normed by S.

It is obvious that any ball of radius one is a well-norming n-quasiball.
Note that a norming quasiball which is not a ball cannot be symmetric, and
thus is proper. A little approximation theory shows how naturally proper
quasiballs arise.

Now, let X be a subspace of Y and fix yeY. The set of best approxi-
mants to y is defined as

P(y) = {xeX: |Ix—yll =d(y, X)}.
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In general, P(y) may be empty, but this never occurs if X is a semi-M-ideal
in Y (see [1], [2], [9] or [12]). In fact, almost the opposite is true.

ProrosiTioN 1 ([10], Theorem 1.2). X is a semi-M-ideal in Y if and only
if, for all yeY with d(y, X) =1, P(y) is a quasiball which norms X.

This gives us the fundamental relationship between quasiballs and M-
ideals. The next two results are similar.

ProrosiTioN 2 ([10], Theorem 1.1). The following are equivalent:
(i) X is an M-ideal in Y.
(ii) For all yeY with d(y, X) =1, P(y) is a 3-quasiball which norms X.
(iii) For all yeY with d(y, X) =1 and all neN, P(y) is an n-quasiball
which norms X.
ProrosiTioN 3 ([10], Theorem 1.3). X is an M-summand in Y if and
only if, for all yeY with d(y, X) =1, P(y) is a ball of radius one.

Quasiballs and containment of c,. At last, we prove some new results.

ProposITION 4. A Banach space X can be a proper semi-M-ideal if and
only if X is well-normed by a proper quasiball.

Proof. (=) This is clear from Propositions 1 and 3.

(=) Let S be a quasiball norming X, let Y be a space containing X and
suppose S < B(y, 1) for some y in Y. If yeX, it is easy to show that §
= B(y, 1), which is not proper. Thus we may suppose that Y = X®Ky.
The idea is to renorm Y, whilst preserving the norm on X.

Let U be the closed convex hull of the set

{A(x—y): xeS, |AI<1}.

It is clear that U is the unit ball for an equivalent norm on Y, which we shall
work with henceforth. The arguments used in [3], Theorem 3.4, show that
U N X is just the original unit ball of X, and that S = P(y), with respect to
this new norm. Since S is not symmetric, Proposition 1 shows that X is a
proper semi-M-ideal in Y.

Proposition 4 shows that a real Banach space is isomorphic to a proper
semi-M-ideal if and only if it contains a proper quasiball. Since every real
Banach space can easily be shown to have both these properties, this
equivalence is not very interesting.

THEOREM 1. A real Banach space X can be a proper M-ideal if and only
if it is normed by a proper 3-quasiball.

Proof. (=) This follows from Propositions 2 and 3.

(«=) By Lemma 1, X is well-normed by some proper 3-quasiball S. As
before, we can find Y containing X and y in Y so that P(y) = S. Now X is a
hyperplane in Y and P(Ay+x) = AP(y)+ x for all AeR, xeX. Thus P(z) is a
3-quasiball which norms X, whenever z€Y, d(z, X) = 1. An application of
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Proposition 2 shows that X is an M-ideal in Y. It is proper by Proposition 3.

THEOREM 2. Let S be a 3-quasiball in some Banach space X. Then S is an
n-quasiball for all n.

Proof. The statement is independent of the scalar field and of the norm,
so we may suppose that the scalars are real and that X is normed by S.
Once again we construct Y containing X so that S = P(y) for some y€Y,
and X is a hyperplane in Y. Another application of Proposition 2 completes
this proof.

TueoReM 3. Let X be a real or complex Banach space, normed by a
quasiball S. Then the following are equivalent:

(i) S is a 3-quasiball.

(ii) S is an n-quasiball for all n.

(iii) S is a S-quasiball.

(iv) For all 2-dimensional spaces Y and all quotient maps Q: X —*Y
there exists y,€Y with Q(S) ~ B(y,, 1).

(v) For some FeX** we have S < B(F, 1).

Proof. (i) = (ii) = (iii). This much is clear.

(iii) = (iv). Consider the family of bounded convex sets Q(S)—y, where
lI¥ll < 1. These are the images, under Q, of the sets S—x for ||x|| <1. By
hypothesis, every 5 members of this family have a point in common. The
dimension of Y over the reals is at most 4, so Helly’s theorem gives us a

point
Yo ) (Q(S)-y).

Iyl <1

Thus int B(y,, 1) = Q(S). Since S has diameter two; this forces
Q(S) ~ B(yo, 1).

(iv) = (v) = (i). These follow from the arguments used in [ 3], Proposition 3.2.

THEOREM 4. A complex Banach space can be a proper M-ideal if and
only if it is normed by a proper 3-quasiball.

Proof. Theorem 3 states that a norming 3-quasiball is actually well-
norming. The ‘result now follows from the proof already given for real
Banach spaces.

It follows from Theorems 1 and 4 that a Banach space is isomorphic to
a proper M-ideal if and only if it contains a proper 3-quasiball. It was shown
in [3] that every proper M-ideal contains an isomorphic copy of ¢,. We are
now in a position to prove the converse of this. But first we recall another
definition from [3]. Let us say that X has the intersection property if, for
every ¢ > 0, one can find finitely many points x,, ..., x, in int U such that

N B(x, 1) =B(O, o).
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THEOREM. 5. For any Banach space X, the following are equivalent:

(i) X is isomorphic to a proper M-ideal.

(ii) X is isomorphic to a space which fails the intersection property.

(iii) X contains an isomorphic copy of c,.

(iv) X contains a proper 3-quasiball.

Proof. (i) = (ii) = (iii)). This is proved in [3], Section 4, using [4],
Theorem 5.

(iii) = (iv). Let M be a closed subspace of X, isomorphic to ¢,. Then M
must contain a proper 3-quasiball S, since ¢, does ([3], Example 2). Note
that S—S will only have relative interior points in M.

Let B=S+U(X). It is clear that B—B has nonempty interior. A
routine application of the separation theorem shows that B is not symmetric.
We show that B is a 3-quasiball.

Now, let x;, x,, x;€int}(B—B). Then

x; €int$(S+U—-S+U)
cint3(S+U)—-(S+U)
=int(}(S-8)+U)
=int(3(S—S)+U) by [8], Section 22,
=inty3(S—S)+int U.

Therefore x; = y;+z;, where y, €inty$(S—S) and z; €int U. Thus
3 3
NB+x)2 NS+U+y+z)
i=1 i=1

3
2 N(S+y;+0) since 0eU+z;
i=1
#@ since S is a 3-quasiball in M.
(iv)=(i). This follows from Theorem 1 or Theorem 4.

If “isomorphic” is replaced by “almost isometric”, the resulting version
of Theorem 5 is correct. This follows by replacing S by &S in the preceding
argument, and the fact that every isomorphic copy of ¢, contains subspaces
almost isometric to ¢, ([7], Lemma 2.2).

However, “isomorphic” cannot be replaced by “isometric” in Theorem 5.
As noted in [3], every infinite-dimensional C(K)-space fails the intersection
property, and so cannot be a proper M-ideal. Nonetheless, every such space
contains isometric copies of c,. Conversely, Harmand and Rao [5] have
exhibited a smooth space (isomorphic to c,, in fact) which is an M-ideal in
its second dual. Clearly, this space is uncomplemented in its second dual, and
contains no isometric copy of c,.



104 D. YOST

~ Complex semi-M-ideals. Let us begin by establishing a version of
Lemma 1 which is applicable to complex Banach spaces.

LemMMA 2. If S is a closed, convex subset of a complex Banach space X,
then the following are equivalent:

(i) S is a ‘quasiball which well-norms X.

(i) For any norm-one - functional f € X*, there exists a scalar A such that
f(S)~B(4, 1).

Proof. (i) = (ii). Suppose that Y is a Banach space containing X and
that S < B(y, 1) for some yeY. Given a norm-one functional feX*, let
g €Y* be a norm-preserving extension of f. Then

f(8)=4g(5) =B(g(), 1)
(in C). But $(S—S) ~ B(0, 1), so

3(f(5)-f(5) = B(0, ).
Simple plane geometry then forces f(S) ~ B(g(y), 1).
(ii) = (i). For any norm-one feX*, f(4(S—S)) ~ B(0, 1). By the Hahn-
Banach theorem and [8] (22.3), S is a quasiball which norms X. As in

Lemma 1, we now take Y = [_(I') for suitable I'. Fix feY* with ||f|| < 1.
By hypothesis, there is AeC with f(S) < B(4, 1). But then

A exﬂsB(f(x), 1).

Since f was arbitrary, we have shown that the collection of balls
B(x, 1), for x €S, has the weak intersection property. Applying this to the
evaluation functionals on Y ([6], Lemma 3) we find there exists some
ye () B(x, 1). Thus S = B(y, 1) and S well-norms X.

xeS
Lemma 2 is also true, but of little consequence, for real Banach spaces.
It is still unknown whether every semi-M-ideal in a complex Banach
space is automatically an M-ideal. We now show that this problem is
equivalent to an easily stated problem concerning two-dimensional convex
sets. This equivalence is already known [13], but the results developed so far
in this paper enable us to give a more transparent proof.

THEOREM 6. The following statements are either all true or all false:
(i) If S is a quasiball which well-norms a complex Banach space, then S
is a 3-quasiball.
@) If S is a compact, convex subset. of a finite-dimensional complex
vector space X, and f(S) is a disc for every fe€X* then S is symmetric.
~ (iii) If S is @ compact, convex subset of a two-dimensional complex vector
space X, and f(S) is a disc for every fe€X* then S is symmetric.
~ (iv) Every two-dimensional semi-M-ideal in a complex Banach space is
already an M-ideal. |
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(v) Every semi-M-ideal in a complex Banach space is already an M-ideal.

Proof. (i) =(ii). Let X be finite dimensional, and S a compact, convex
subset which spans X, and such that, for all feX™*, f(S)is a disc. We make
X* into a Banach space by defining || f]| to be the radius of the disc f(S). It
is routine to check that this defines a norm on X*, which then induces a
norm on X. Lemma 2 then states that S is a quasiball which well-norms X.
By (i), S is a 3-quasiball. Theorem 3 and the reflexivity of X then force
S = B(x, 1) for some xeX. But $(S—S) ~ B(0, 1), so, by the separation
theorem, S = B(x, 1) is symmetric.

(i) = (iii) is obvious. .

(iii) = (iv). Suppose X is a two-dimensional space which is a proper semi-
M-ideal in some larger space. By Proposition 4, X is well-normed by some
proper quasiball S. Obviously, S is compact, and Lemma 2 states that f(S) is
a disc for every fe€X*. Then, by our hypothesis, S is symmetric, which is
impossible.

(iv) = (v). This is well known, and a proof appears in [13]. It follows
easily from the duality theory of M-ideals and semi-M-ideals ([9], Section 6,
or [12)). '

(v)=(i). Let X be well-normed by a (proper) quasiball S. By Proposi-
tion 4, X is a semi-M-ideal in some larger space Y. By (v), X is actually an
M-ideal in Y. A careful reading of the proof of Theorem 8 shows that S is a
3-quasiball.

Although statement (iii) appears so much simpler than statement (v), it
has stubbornly resisted all attempts to determine its truth or falsity. We hope
that the new proof of this equivalence might help to solve this.

ProBLEM. Let S be a compact, convex subset of C?> and suppose that
f(8) is a disc for every linear f: C? - C. Is S necessarily symmetric? (P 1354)
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