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EACH SEPARABLE SUBSPACE OF WHICH
I8 ZERO-DIMENSIONAL
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1. Let us recall that a space S is said to be strongly metrizable if it has
a base which is the union of countably many star-finite open coverings of 8
(see [1], Chapter 6, § 3, or [4]). The main goal of this paper is the following

THEOREM. Let n be an arbitrary natural number. Then there exists
a strongly metrizable space S, with dimS, = n such that each separable
subspace of S, 1is zero-dimensional.

This Theorem is an immediate corollary to the following

PROPOSITION. For every metrizable separable space X there exists
a strongly metrizable space S8 with dimS = dim X such that every comple-
tion of the space 8 contains a copy of X, but each separable subspace of S
18 zero-dimensional.

2. Comments. A metrizable space ¥ with dimY = 1 each separable
subspace of which is zero-dimensional was constructed by R. Pol (see [5],
Example 2). After removing the point 0 from Y we obtain a strongly
metrizable space with these properties. It seems that the method of [5]
cannot be applied to obtain the spaces of greater dimension; it would
be interesting in this context to compute the dimension of the n-th power
of Y (P 1026). Note also that the metrizable space 4 with ind 4 = 0 and
dim 4 =1, constructed by Roy [7], has also that curiosity; however, 4
is not strongly metrizable, since for such spaces the dimensions ind and
dim coincide (see [1], Chapter 6, § 3, Theorem 13).

3. Notation and auxiliary result. Our terminology follows [2]. Let ¢
denote the power of continuum and let ¢* be the first cardinal after c.
Let B be the Baire space of weight ¢*, i.e. the Cartesian product of count-
ably many copies of the discrete space of cardinality ¢* (see [2], Exam-
ple 4.2.2). Finally, let 2 be the initial ordinal of cardinality ¢, and
At — the initial ordinal of cardinality c*.
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We shall use the following result obtained by R. Pol ([6], Section 3).

There exist a decomposition of the space B into disjoint sets {B,: &< A}
such that

(i) U {B,: a< &} is closed in B for every &< A%,

and a disjoint decomposition {K,: a << A} of the set of ordinals less than
AT such that the sets E, = | {B,: &€ K,} have the following property:

(i) o E, < G,, where G, 18 a G4-set in B, then
NG #9.

a<l
Although the statement was not stated in this form in [6], it is casy
to observe that if we apply the reasonings given in the proof of Propo-
gition 3.5 in [6] (with obvious modifications) to the sets constructed in
Theorem 3.3 of [6], then we obtain the required result.

4. Proof of the Proposition. Since X is of cardinality not greater
than ¢, we can choose an injection ¢ of the set X into the set of ordinals
less than A. Let us put E, = E,, and let

S = U Ez X {:L‘}
zeX
be the subspace of the Cartesian product B x X, where B is the Baire
space defined above. Since the spaces B and X are strongly metrizable
(see [1], Chapter 6, § 3), so is the space S. '

We shall verify that if A is a separable subspace of S, then A is zero-

dimensional. Let

C = {&: E< 2t and AN(B, x X) # 0}.
The set C is countable, for otherwise the sets
A, =AnUU{B,xX: a< &}, £€C,

would form a well-ordered, uncountable, strictly increasing family of
closed (by (i)) subspaces of A, which is impossible (see [3], § 24, IT, Theo-
rem 3). Now we infer from the Sum Theorem (see [2], Theorem 7.2.1)

that the space Ul E, x {«} is zero-dimensional, as the sets E, x {z}
zeg— H(C)
are closed in §. Since

As U E,x{s},
a:etp'l(C)
we conclude that dimA4 = 0.
We shall show that each completion of 8 contains topologically the
space X. By the classical Lavrentiev theorem (see [2], Theorem 4.3.13)
it suffices to show that every G,-set @G in B x X which contains the space S
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contains a copy of X. To this end, let us observe that for each point » € X
the set
@ = {yeB: (y,2) @)

is a G4-set in B containing E,. Thus, by property (ii), there exists a point

zoe () G,
reX

Then we have {r,} X X = @, which completes the proof.
To prove that dimS = dim X let us observe first that

dim 8 < dim(B x X) < diimB+dimX = dimX

and next that
dim8 > dim X,

a8 each metrizable space has a dimension-preserving completion (see [2]
or [1]).

Remark. It is worthwhile to notice that our reasoning was suggested
by a proof of the following simple property of the classical Knaster-Kura-
towski space M consisting of the points (z, y), where z runs over the
Cantor set C, y belongs to the unit interval I, and y is rational if and only
if # belongs to the set @ of the end points of the Cantor set (see [2], P.6.W):
every G,-8et @ in C x I which contains M contains an interval {w} x I.
We have generalized this construction by taking instead of the decompo-
sition of C into two sets @ and C\Q the decomposition of B(c*) into ¢
sets which are non-separable analogues of the classical Bernstein sets
in C (cf. [6], Theorem 3.3).
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