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EXTENDING COMPLETE CONTINUOUS PSEUDOMETRICS
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L. I. SENNOTT (FAIRFAX, VIRGINIA)

In [1] (p. 20) the claim is made that if S is a subspace of a topological
space X, then every complete, totally bounded continuous pseudometric
on S can be extended to a continuous pseudometric on X. If we let X
be the unit interval, 8§ = [0,1]— {1/2} and define f on 8 by f(z) =0
if #<1/2 and by f(z) =1 if > 1/2, then the continuous pseudometric
¥, defined by Y.(x,y) = |f(x)—f(y)| is complete and totally bounded.
If it extended to a continuous pseudometric d on X, there would exist an
open interval (a, b) containing 1/2 and contained in the d-sphere about
1/2 with radius 1/2. Choosing a < <1/2 and 1/2<y < b, we have
d(z,y) <1, but d(»,y) = ¥;(«, y) = 1. In this note we give the correct
formulation of this result, namely that the extendability of every complete,
totally bounded pseudometric is equivalent to C*-embedding.

Recall that if y is an infinite cardinal number, then § is P"-embedded
(P-embedded) in X if every continuous y-separable (continuous) pseudo-
metric on S extends to a continuous pseudometric on X. See [3] for infor-
mation on this concept. P-embedding becomes an important concept
for studying the extendability of various types of functions. For example,
in [2] Ald and Sennott showed that § is P-embedded in X iff for all com-
pact T,-spaces Y we have § x Y (O*-embedded in X x Y. More recently,
Morita and Hoshina [6] refined this and other results and inferred (among
other results) that if Y is a compact 7',-space of weight y, then § is P*-em-
bedded in X iff § x Y is (*-embedded in X x Y. (This was also obtained
in [7].) They also stated [5] that S is P’-embedded in X iff (X, §) has the
Homotopy Extension Property with respect to every complete ANR space
of weight less than or equal to y. In this note we will show that 8§ is
P?-embedded in X iff every complete continuous jy-separable pseudo-
metric on 8 extends to a continuous pseudometric on X. Several conse-
quences of this result will be discussed.

For the remainder of this note, 8 will always represent a subspace
of a topological space X, y will denote an infinite cardinal number, and
all functions and pseudometrics will be assumed continuous.
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The following proposition shows how complete pseudometrics can
be formed.

PROPOSITION 1. Let f be a function from X to the pseudometric space
(Y, m). Then the pseudometric d defined by d(x,y) = m(f(x),f(y)) is
complete iff f(X) 18 a complete subspace of X.

COROLLARY. Let f be a real-valued function on X. Then ¥, is complete
iff f(X) is closed; ¥, i3 complete and totally bounded iff f(X) is compact.

The following lemma will be useful several times.

LeMMA 1. Let S be a subspace of X and let f be a real-valued function
on 8. Then f extends to a function on X iff ¥, extends to a pseudometric on X.

Proof. If f extends to f* on X, then ¥, is an extension of ¥;. Now
assume that ¥; extends to a pseudometric d on X. Then f is uniformly
continuous with respect to d, hence f extends to a function on the closure
of 8§ in (X, d). Since (X, d) is normal, f extends to a function on X.

For a direct proof (not using the C-embedding of closed subsets
of normal spaces) of a slightly different result, see 15.1 and 15.2 of [3].

THEOREM 1. Let 8 be a subspace of a topological space X. The following
are equivalent:

(1) 8 is C*-embedded in X.

(2) Every complete, totally bounded pseudometric on 8 extends to a
pseudometric on X.

(3) Every function f on 8 that is either 2-valued or whose image is
a closed interval extends to a function on X.

Proof. It is known (17.10 of [3]) that § is C*-embedded in X iff
every totally bounded pseudometric on S extends to a pseudometric on X.
Hence it is clear that (1) implies (2). To show that (2) implies (3), observe
that if f is a function as in (3), then ¥; is complete and totally bounded,
hence extends to a pseudometric d on X. By Lemma 1, f extends to X.
To show that (3) implies (1), it is sufficient to prove that any two complete-
ly separated sets in S are completely separated in X ([4], p. 18). Let A
and B be subsets of § and let f be a function from § into [0, 1] such that
f(4) =0 and f(B) =1. If f(8) = [0, 1], then f extends to f* on X that
separates A and B. Assume that there exists an r, 0 < r < 1, such that
r ¢ f(S). Then g, defined by g(z) =0 if f(x) <r and by g(x) =1 if
f(@) > r, is 2-valued, hence extends to g* on X and g* separates A and B.

In [9] an example is given of a zero-dimensional space X having a
dense, non-C*-embedded subset 8 such that every 2-valued function on 8
extends to X. Hence, even in the presence of a strong type of disconnected-
ness, it is still necessary to consider functions whose ranges are closed
intervals in showing the C*-embedding.

Using similar reasoning to that of Theorem 1, we obtain
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COROLLARY. Let S be a subspace of a topological space X. The following
are equivalent:

(1) 8 48 C-embedded in X.

(2) Every complete separable pseudometric on S extends to a pseudo-
metric on X.

(3) Ewvery function f on S such that f(8S) is either discrete in R or a closed
interval (bounded or unbounded) extends to a function on X.

Proof. It is known (16.4 of [3]) that 8 is C-embedded in X iff every
separable pseudometric on S extends to a pseudometric on X. Hence
it is clear that (1) implies (2). fis as in (3), then ¥, is complete and separable,
hence extends to a pseudometric d on X. By Lemma 1, f extends to X.
To show that (3) implies (1), observe that, by Theorem 1, § is *-embedded
in X. It is only necessary to show that every zero set disjoint from S is
completely separated from S ([4], p. 19). Let Z(f)n8 =©0. We may
assume that 0 < f << 1; hence f|8§ is positive and g = 1/f is greater than
or equal to 1 on 8. If g is bounded on 8, it extends to g on X and gf separates
Z(f) and 8. Assume that g is unbounded on 8. If there exists a number r
such that [r, 4+ o) < ¢g(8), define » on 8 by h =gvr. (By fvg (fag)
we mean the supremum (infimum) of the functions f and g.) Then, by (3),
h extends to & on X and AfAa1l separates Z(f) and 8. Suppose that there
exists an unbounded, increasing, discrete sequence of numbers (r,) such
that r, ¢ g(8) for all n. Assume that r; > 1. Define » on 8§ as follows:
h(z) =ry it g(x) <ry,and h(z) =7, if r,_, < g(x) <r,. Then h is contin-
uous and h(8) is discrete, hence h extends to h on X and hfa1l separates
Z(f) and 8.

To show that P”-embedding is equivalent to requiring every complete
y-separable pseudometric to extend, we need to use the space J(y), the
“hedgehog with y spikes”. This space is formed by taking y disjoint
copies of the unit interval, identifying the point 0 of each interval and de-
fining a metric m as follows: m(r, 8) = |r— s| if r and s are in the same spike,
and m(r, 8) = r+8 otherwise. Under the metric m, the hedgehog is a com-
plete y-separable metrizable AE for metric spaces.

THEOREM 2. Let S be a subspace of a topological space X. Then S is
P?-embedded (P-embedded) in X iff every complete y-separable (complete)
pseudometric on S extends to a pseudometric on X.

Proof. Since 8§ is P-embedded in X iff it is P”-embedded in X for
all infinite cardinal numbers y, it is sufficient to show the first statement.
The necessity is clear. To show the sufficiency we make use of a theorem
of Przymusinski [7] which states that S is P’-embedded in X iff every
function from 8 into J(y) extends to a function on X. We prove the con-
dition
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(%) Given a function f from a space Y into J(y), and a natural number
n, there exists a function g, from Y into J(y) such that g,(¥Y) is closed
in J(y) and m(g, (), f(x)) <1/n for all ze Y.

This will complete the proof. In fact, if f is a function from §
into J(y) and g, is as in (*) for every =, then d,(x,y) = m(g,(x), g.(¥))
is a complete y-separable pseudometric on 8, hence extends to a pseudo-
metric d; on X. Letting 2 be the pseudometric uniformity generated
by {d;: n € N}, we see that f is uniformly continuous with respect to 2,
hence extends to the closure of 8 in (X, 2). Since J(y) is an AE for metric
spaces, f extends to a function on X.

To verify (), let us denote the spikes of J(y) by I, with points (¢, a),
0 <t<1. Consider

I, =|[(¢/n, a), ((i+1)/n, a)], where 0<i<mn.

Let 2>1 for the moment. If f(¥) $ I%, choose (&, a) € I — f(Y)
and fix it. We drop the indices in what follows to make the definition of
g, less cumbersome.

If f(z) eI’ for some 1<i<mn and f(Y)o I, then g,(®) = f().
For f(Y) p I*, let g, (z) = (z+1)/n if f(z) > ¢ and g,(x) = i/n if f(z) < t‘

If o ¢f(Y) and f(x) eI let g,(z) =1/n. If 0 e f(Y) and f(x) eI
consider two cases:

1. If f(Y) o [1/2n,1/n], let h be the map of (1/2n,1/n] onto (0, I/n]
defined by h(z) =2x-1/n. If f(x)e(1/2n,1/n], let g,(x) = h(f(z)),
otherwise let ¢g,(z) = 0.

2. If f(Y) »[1/2n,1/n], choose a point t° e [1/2n,1/n]—f(Y) and
let g,(x) =1/n for f(z) > t° otherwise g,(x) = 0.

This completes the definition of g,. Clearly, ¢,(Y) is closed in J(y)
and no point is moved more than 1 /n.

COROLLARY. S is P”-embedded in X iff every function from 8 onto
a closed subset of a complete metrizable AE (metric) Y with weight of Y less
than or equal to y can be extended over X.

Proof. The necessity is shown in [5] (and also, independently, in
[7]). To show the sufficiency, observe by the proof of Theorem 2
that the extendability of each g, guarantees the extendability of d. But
each g, is a function from S onto a closed subset of a complete metric AE
with weight less than or equal to y.

In [8] we introduced the notion of M”-embedding: 8 is M?”-embedded
(M-embedded) in X if every function from 8 to a metrizable y-separable
(metrizable) AE (metric) extends to X. This notion was characterized
and the following proposition given:

If (1) every y-separable pseudometric on S i8 majorized by a complete
y-separable pseudometric on 8, and (2) 8 18 P?-embedded in X, then S s
M?-embedded in X.
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If every complete y-separable pseudometric on S extends and (1)

holds, then 8 is clearly P?-embedded in X. Theorem 2 shows that this is
true without assumption (1).
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