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ON QUASI-DOMINATION OF COMPACTA

BY

J. M. R. SANJURIJO (MADRID)

1. Introduction. The notions of U-domination, quasi-domination,
quasi-affinity, and quasi-equivalence of compacta have been introduced by
Borsuk in [3]. These relations are weaker than the relations of fundamental
domination and of fundamental equivalence and they allow us to consider
shapes from a quantitative point of view.

In the present note we study several properties of quasi-domination in
connection with some shape invariants and with the concept of X-likeness
(due to Mardesi¢ and Segal [10], p. 146). Some of our theorems generalize
results of Borsuk.

‘ We assume that the basic notions and the most elementary results of the
theory of shape are known to the reader, who can find them in [2], [7], and
[9]. We recall now the concept of quasi-domination (cf. [8]).

Let X and Y be compacta (i.c., compact metrizable spaces). We say that
Y is quasi-dominated by X provided that for every map h: Y — P, where P is
a polyhedron, there are shape morphisms f: X — Y and ¢g: Y — X such that

S(h)-f-9==5S(h),
where S(h) is the shape morphism induced by h.
The former definition is equivalent to the original Borsuk’s definition in
[3]. If we suppose that X and Y lie in the Hilbert cube Q, it is possible to
characterize quasi-domination as follows:
Y is quasi-dominated by X if and only if for every closed neighborhood
V of Y in Q there exist shape morphism f: X — Y and ¢g: Y — X such that

S@)-f-9=50),
where i: Y — V is the inclusion.
We shall use the notation Y <?X to express the fact that Y is quasi-
dominated by X. Some properties of quasi-domination can be found in [3],

[4]. (6], [8], and [12].
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useful conversations and to the referee for valuable suggestions, especially
concerning the preceding formulations of quasi-domination.

2. Quasi-domination and movable compacta. The main result of this
section is Theorem 1. This theorem generalizes a well-known result of
Borsuk (see [2], p. 232).

THEOREM 1. Let X and Y be two compacta lying in the Hilbert cube Q. If
Y is movable and X-like, then Y <?X.

Proof. According to a theorem of Spiez [13] we can assume that Y is
uniformly movable. Then, if V is a closed neighborhood of Y (in Q), there
exist a closed neighborhood V, — V of Y and a shape morphism h: V, - Y
such that

(1) S@-h=5(),

where S (i) and S(j) are shape morphisms induced by the inclusions i: Y - V
and j: ¥V, — V. In this situation we say that the neighborhood V; is associated
with V.

By a small modification of the proof of Borsuk’s Theorem 12.2 ([2],
p. 232) it is easy to see that there are maps g: Y- X and f: X -V,
satisfying the relation

) frg=>io,
where iy,: Y = V, is the inclusion. Then, for
S(g: Y-X and hS(f): X-Y
we get shape morphisms that, by (1) and (2), satisfy the relation

S@)-h-S(f)-S(g) =S(U)-S(io) = S().

Thus the proof of Theorem 1 is complete.

Remark 1. As follows from [2], p. 233, the relation Sh(Y) < Sh(X)
cannot be deduced from the hypothesis of Theorem 1. In fact, Borsuk [2]
finds two quasi-homeomorphic movable compacta X and Y such that Y is
not shape dominated by X.

CoROLLARY 1. Let X and Y be two compacta. If Y is movable and X-like
and X is FAR, then Y is FAR.

Proof. By Theorem 1 we have Y <?X, and it is an elementary fact that
the property FAR is an invariant of quasi-domination (see [6], Corollary 3.3,
and [8], Theorem 1).

In the following result we express a simple characterization of quasi-
domination for movable compacta.
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THEOREM 2. Let X and Y be movable compacta. Then Y <X if and only
if for every neighborhood V of Y (in Q) there exists a map g: X — V such that
for some continuous extension §: U —V of g to a closed neighborhood of X
(in Q), the following statement holds:

(¥} For every neighborhood U = U of X (in Q) there exists a map
f: Y—=U such that §g-f~i, where i: Y -V is the inclusion.

Proof. Let V be a closed neighborhood of Y in Q and V the neigh-
borhood associated with ¥ by the uniform movability of Y. Take §: U - V
such that statement (x) holds and U is associated with U. Then we have
inclusions

it Y-SV, Y-SV, jV-oV,
io: X=U, jo: U->U
and shape morphisms
h: V—-Y and bhy: U-X
such that
(3) S(;)'h =S() and S({o)'ho = S(jo)-

Now, let f: Y — U be a map satisfying the relation

4 gjof =i.
Setting
ho-S(f): Y—=X and h-S(G)SGy): X—-Y

we get shape morphisms that, in virtue of (3) and (4), satisfy the relations

S(i)-h-S(3)S(io) ho-S(f) = S() h-S@)-S (o) S(f)
=S(@)-h-S(E) = S(@) S(i) = S().

This proves the part “if” of the theorem. The converse follows immediately.

Remark 2. Theorem 2 allows us to replace shape morphisms by maps
in the definition of quasi-domination for movable compacta. In fact, in
statement (x) we only need the weaker requirement of the existence of f: Y
— U for U associated with U by the uniform movability of X.

Borsuk proves in [3] that for YeANR it is equivalent to be quasi-
dominated and to be shape dominated by X. In the sequel we prove a more
general result.

THeorReM 3. If Y is an FANR-compactum and Y <% X, then Sh(Y)
< Sh(X).
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Proof. We can assume that X and Y lie in the Hilbert cube Q. Since Y
is FANR, there exists a shape retraction r: V — Y, where V is a closed
neighborhood of Y (in Q).

Consider now two shape morphisms f: X - Y and ¢g: Y — X such that

) SG-f9=50),
where i: Y —» V is the inclusion. Setting
g:Y->X and r-SOfiX-Y
we get two shape morphisms such that the relation
rSifg=rSi=1

(1y is the identity morphism) holds in virtue of (5). This proves the theorem.

COROLLARY 2. Let X and Y be compacta. If Y is FANR and X-like, then
Sh(Y) < Sh(X).

Proof. It is well known that if Y is FANR, then Y is movable. The
corollary follows from Theorems 1 and 3.

3. Some other properties of quasi-domination. In this section we state
without proof the following three theorems:

THEOREM 4. Let # and R’ be two families of compacta. If for every Ae R
there exists Be #' such that A <?B, then ® is M-dominated by X'

(See [11] for definitions of #-movability and M-domination.)

THEOREM 5. If the compactum Y is quasi-dominated by the compactum X,
then the shape coefficients of Lusternik—Schnirelmann of X and Y fulfil the
relation x(Y) < x(X).

The definition of quasi-domination can be transferred to pointed spaces
in a natural way. The following theorem holds:

THEOREM 6. If the pointed compactum (Y, y,) is quasi-dominated by
(X, xo), and (X, x,) is approximatively n-connected, then (Y, y,) is approxima-
tively n-connected.

The proofs of Theorems 4-6 can be obtained with a few changes in the
respective theorems for shape domination due to Oledzki ([11], Theorem
(2.5)) and Borsuk ([5], Theorem (4.1), and [2], Theorem (8.1), p. 144).

Added in proof. Theorem 3 can be obtained as a consequence of
Lemma 3.7 and Theorem 3.10 of L. Boxer and R. B. Sher, Borsuk’s
fundamental metric and shape domination, Bulletin de 'Académie Polonaise
des Sciences 26 (1978), p. 849-853. Boxer has recently proved (Remarks on
quasi-domination, ibidem 30 (1982), p. 553-558) that this result holds for
the class of calm compacta introduced by Z. Cerin.
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