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1. Let S be an arbitrary set and let X be the set of all sequences
o = {s,} such that s,eS. By 8* we shall denote the collection of all subsets
of 8.

A function G from X to §* is called a @-convergence function or,
shortly, a G-convergence. A sequence xeX is said to be G-convergent iff
G(z) is a non-empty set. An element se8 is called a G-limit of x iff s G (x).

The definition of a G-convergence function is due to Mikusinski.

There is a one-to-one correspondence between the collection of all
G-convergence functions and the collection of all classes of convergences.
A class of convergence is any set of pairs (x,s), where xe¢X and seS.
We shall say that G-convergence corresponds to €-class of convergence
provided that, for every xeX, seG(x) iff (2, s)e% .and: G(x) is the empty
set if (z, s)¢¥ for any seS.

2. In this section we shall consider some types of G-convergence.
If v = {s,} is a constant sequence such that s, = s for each », then we
shall write G(s) instead of G(x) or G({s,}). We say that a subset 4 = §
is G-closed iff we have G (x) = A for any sequence {s,} = xsuch that s, <A.

We say that G-convergence is of type £ iff it satisfies the following
conditions:

1° seG(s) for each sef,

2° if y is a subsequence of x, then G(r) < G (y),

3° the set G(x) is G-closed for every ze X,

4° if t,eG(s,), then G({t,}) = G({s,}).

G-convergence is said to be of type £* iff it satisfies conditions 1°-4°
and, moreover, the following condition:

5° if se G(x), then there is a subsequence y of x such that for any
subsequence z of ¥ we have seG(z).

If € is a class of convergence of type %, i.e.,

1’ (z,8)e¥ and (x,t)e? implies s |l ¢,
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2’ (s, 8)e¥ for each s, where the first s is understood as a sequence
whose all terms are equal to s,

3" (z,8)e? implies (y,s)e¥ for every subsequence y of uw,
then G-convergence which corresponds to € is of type Z.

Moreover, if € is of type £*, i.e., if ¥ satisfies conditions 1’-3’ and
the condition

4' if (x, 8)¢¥, then there exists a subsequence y of x such that we

have (2, 8) ¢ ¢ for any subsequence z of y,
then G-convergence corresponding to € is of type £*.

In fact, if G-convergence corresponds to ¥ in the sense of section 1,
then it satisfies conditions 1° 2° and 5° by virtue of conditions 2’, 3’
and 4’, respectively. By 1’, we have uniqueness of G-limit of z, i.e., if
seG(x) and te G(x), then s = ¢. Hence, by 1° we obtain 3° and 4°.

Let F be any family of subsets of §. An element seS is said to be
F-limit of a sequence = = {s,} iff for any set UeF such that seU
the sequence «z is eventually in U, i.e., there exists an N such that n> N
implies s,eU.

By a C(F)-convergence we shall mean a G-convergence such that,
for every sequence x, G(x) is the set of all F-limits of .

The definition of a C-operation is due to Mikusinski.

THEOREM 1. For any family F of subsets of S, C(F)-convergence
is of type Z*.

Proof. It is clear that seC(F) (s), which proves 1°. If y is a subse-
quence of # and s is an F-limit of x, then s is an F-limit of y. Thus
C(F)(y) o C(F)(x), which proves 2° Assume that ¢,eC(F)(x) and
seC(F)({t,}). Let U be an arbitrary element of F such that seU. There
exists an element ?,¢U. Since ?,¢C(F)(x) and ?,¢U, the sequence is
eventually in U by virtue of the definition of C(F)(x). Thus seC(F)(=)
and, subsequently, C(F)({t,}) = C(F)(x) which implies 3°. Suppose that
t,eC(F)(s,) and seC(F)({t,}). Then for any UeF such that se U we have
t,e U for sufficiently large n. Since ?,eC(F)(s,),t,e¢U implies s,¢ U for
sufficiently large n. Hence seC(F)({s,}), which implies 4°. If an element
sed8 is not an F-limit of «, then there is a U<F and a subsequence y = {t,}
of x such that seU and ¢{,¢U for » =1,2,... Evidently, seC(F)(z)
for any subsequence z of y. This proves condition 5°. Thus the proof is
complete.

3. Suppose that a G-convergence is of type #*. There arises the
question whether there exists a family F of subsets § such that O(F) = G.
In the case when G-convergence corresponds to a class € of convergence
of type #*, the positive answer follows from the results of paper [5] and
monograph [4], and then F is a topology for S. In this section we shall
give a generalization of these results.
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Let @ be a convergence from X to S*. A subset U of S is said to be
G-open iff, for any sequence reX, x is eventually in U provided the in-
tersection U N G(x) is not empty. By T'(G) we shall denote the family
of all G-open sets. Evidently, if U is a G-open set, then the complementary
S\ U is G-closed.

For any G-convergence function, the family 7'(G) is a topology for
8, i.e., the empty set @ and 8 itself belong to 7' (@), the union of any number
of members of 7'(G) is again a member of 7(G), and the intersection of
a finite number of members of 7'(GF) is again a member of T(G).

In the sequel the fact that y is a subsequence of = will be denoted

by ¥y 3 .

THEOREM 2. Suppose that a G-convergence function is of type £* and
satisfies the following condition:

6° for any sequence x there esists a subsequence y such that the set

4 = G(2)
23y
18 G-closed.
Then, if an element seS is a T (G)-limit of x, there exists for any sub-
sequence y of x a subsequence z such that s <G (z).

Proof. Let x be an arbitrary sequence in X and let s be an arbitrary
element of 8. Suppose that there exists a subsequence y of = such that
for any subsequence z of y we have s¢@(2). We assert that the element
8 cannot be a T(G)-limit of x. In fact, by condition 6°, there exists a sub-

sequence % of z such that the set A = (J G(f) is G-closed. Assume that
0 t3z

w = {s,} and let B, = (U G(s,), where G (s,) is understood to be the value

n=k

of a G-convergence function at the constant sequence whose all terms
equal s,.

We shall prove that there exists a k such that s¢ A U B, and the
set A U B, is G-closed.

First we shall show that the set A U B, is G-closed for each k. In
fact, let {p,} be an arbitrary sequence such that p, ¢B, U A. There exists
a subsequence {q,} of {p,} such that ¢,eA or ¢,eB, for all n. In the first
case we have G({p,}) = G({q,}) = A, by virtue of postulate 2° and the
fact that the set A is G-closed. In the second case there exists a subse-
quence {r,} of {g,} such that r, G (s;) for each n and an ¢ >k or r, <G (s; )
with ¢, - oo as n — oo. In the first case we have G({p,}) = G({r,})
< G(s;) © B, U A by virtue of postulates 2° and 4° and the definition
of B,. In the second case we have G({p,}) = G({r,}) = G({s;,}) = 4 U B,
in view of postulates 2° and 4° and the definition of 4. Thus we have
proved that the set 4 U B, is G-closed. Now we shall show that there
exists a & such that seA U B,. Since s¢G(z) for any subsequence z of Y,
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we have s¢A. Suppose that seB, for any k. Then there exists a subse-
quence j, of the sequence of integers such that seG(s; ) forn =1,2, ...
Hence we have seG(s) = G({s;,}) = 4 in view of postulates 1° and 4°
and the definition of A. A contradiction with seA. Now we can prove
that the element s cannot be a T'(G)-limit of z. Really, in view of what
we have proved so far, we have s¢B, U A for a k¥ and the set B, U 4
is G-closed. Hence se V = S\ (B, U A) and the set V is G-open. Moreover,
by postulate 1°, s,eG(s,) = B, for n =k, k+1,... Thus we have s,¢V
for n =k, k+1, ... Therefore the element s is not a T'(&)-limit of {s,}
and, consequently, s is not a T'(G)-limit of the sequence x, because {s,}
is a subsequence of z. Finally, if an element s is a T'(G)-limit of x, then
for any subsequence y of x there exists a subsequence 2 such that seG(z),
which was to be proved.

From Theorem 2 it follows

'THEOREM 3. If G-convergence is of type £* and satisfies condition 6°,
then C(T(G)) = G.

In fact, let « be an arbitrary sequence and seG(x). If U is a G-open
set and se U, then x is eventually in U. This proves that s is a T(G)-limit
of z. Hence G(v) = C(T(G))(x). If s is a T(G)-limit of x, then, by Theo-
rem 2, for any subsequence y of x there exists a subsequence 2z such that
s G (z). Hence, by condition 5° se<@(x). Thus we have C(T(G))(z) = G ()
which implies the assertion.

THEOREM 4. C(T(C(F))) = C(F), where F is an arbitrary family
of subset of S.

Proof. It is easy to verify that every set UeF is C(F)-open. Hence
we have T(C(F)) > F. Thus if an element seS is a T(C(F))-limit of
a sequence x, then s is an F-limit of # and, consequently,

C(T(C(F))(x) = C(F)(x).

If seC(F)(x), a set U is C(F)-open,and seU, then x is eventually
in U by the definition of a C(F)-open set. Therefore s is a T'(C(F))-limit
of z. Hence

C(T(C(B)(@) > C(F)(x)
and, consequently,
C(T(C(F))(x) = C(F)(x)

which implies our assertion.
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