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SOME REMARKS ON THE STEINER TRIPLE SYSTEMS
ASSOCIATED WITH STEINER QUADRUPLE SYSTEMS

BY
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1. Introduction. A Steiner quadruple system (or, more simply, a quadru-
ple system) is a pair (@, q), where @ is a finite set and q is a collection of
4-element subsets of @ (called blocks) such that any three distinct elements
of @ belong to exactly one block of ¢. The number |Q| is called the order
of the quadruple system (@, q). Hanani [3] proved in 1960 that the spectrum
for quadruple systems consisted of the set of all positive integers n = 2
or 4 (mod 6). If (@, ¢q) is a quadruple system and « is any element in @,
we denote @\{z} by @, and the set of all triples {a, b, ¢} such that
{#, a,b, c}eq by g(x). It is a routine matter to see that (Q,, ¢(»)) is a Stei-
ner triple system. Two very interesting problems concerning Steiner quad-
ruple systems are the following:

(1) The construction of quadruple systems (@, ¢) such that, for
some subset X of @ containing at least two elements, the Steiner triple
systems (Q,, ¢(»)) and (@,, ¢(¥)) are non-isomorphic whenever z # ye¢ X.
If | X| =n>2 we will say that (@, q) has at least n non-isomorphic asso-
ciated triple systems (NATS).

(2) The construction of a pair of non-isomorphic Qua,druple systems
with the property that the associated triple systems can be isomorphically
paired.

In [7], Mendelsohn and Hung have shown that there are exactly four
non-isomorphic quadruple systems of order 14. Two of these systems have
2 NATS and the other two are non-isomorphic while having all of their
associated triple systems isomorphic to the same Steiner triple system
of order 13. Hence there are quadruple systems with at least 2 NATS and
there are non-isomorphic quadruple systems whose associated triple systems
can be isomorphically paired. As far as the author can tell four quadruple
systems of order 14 constructed by Mendelsohn and Hung are the only
known systems having property described in (1) or (2). Quadruple systems
having property described in (2) are of particular interest since they il-
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lustrate the fact that (to within isomorphic) quadruple systems are not
necessarily determined by their associated triple systems. The purpose
of this paper * is to give a very simple construction for quadruple systems
having at least 2 NATS and for pairs of non-isomorphic quadruple systems
whose associated triple systems can be isomorphically paired. For a more
detailed account of the techniques used in what follows the reader is re-
ferred to [4]-[6] and [8].

2. Steiner 3-skeins. By a 3-skein is meant a pair (@, (,,)), where @
is a finite set and (,,) is a ternary operation on @ such that if in the equation
(#,y¥,2) = w any three elements of x, y,2 and w are given, then the re-
maining element is uniquely determined [1]. It is well known that
a quadruple system (@, g) is equivalent to a 3-skein (@, (,,)) satistying
the following three identities (see, for example, [2]):

(@,9,2) =(y,@,2) = (2,9,9), (v,5,9) =y and (v,9,(,9,2) =z

Such a 3-skein is called a Steiner 3-skein. In what follows it is conve-
nient to consider quadruple systems algebraically. Although we will use
mostly 3-skein and quasigroup terminology we will switch to quadruple
triple system vernacular when it facilitates whatever is under discussion.
Hence, (@, (,,)) being a Steiner 3-skein and # any element in @, the idempo-
tent quasigroup (Q,, o()) defined for a # b by a o(x) b = ¢ if and only if
(a, b, ¢) = x is a Steiner quasigroup and is, of course, equivalent to the
Steiner triple system (@, ¢()). |

3. Construction of Steiner 3-skeins having at least 2 NATS. Let (@, ¢(,,))
and (V,v(,)) be any two Steiner 3-skeins. We will set § =@ XV and
denote the direct product of (@, q(,,)) and (V,v(,)) by (8, gv(,)). In
what follows we will assume that Q@ = {1,2,...,q}and V = {1, 2, ..., v}.
If we set 1* = (1, 1), then (8., 0(1*)) is the Steiner quasigroup obtained
from (8, gv(,y)) by deleting 1* = (1, 1). That is to say,

(87 x) 0(1*) (ty ?/) = Q’l)((l, 1)7 (31 w)) (t9 'y)) = (9(17 8, t)’ ’D‘(l, w"y))

Now let (T,0(1*)) be any subquasigroup of (8.,0(1%), let V’
= {ve V |(q,v)e T} and write T, = {geQ | (¢, v)e T}.

THEOREM 1. If (84, o(1%)) and (T, 0(1%)) and V' are as above, then
| Tyl = |Ty| for all vy,we V'. If T, # 9, then |T,| = |T,| —1.

Proof. Let # # ye¢ V, and let (s, #) be any element in T, and (¢, )
any element in T,. Since (T,0(1%)) is a subquasigroup of (8., o(1%),
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there is an element (u,2)eT, 2 # « or y, such that (s, x)o(1*)(u,2)
= (¢, y). Hence ¢q(1,s,u) =t and v(1, z,2) = y. Now let (s, #) be any
element in 7',. Since (u, 2)e T, we must have .

(s', ) 0(1%) (u, 2) = (Q(ly s’y u),v(1, @, z))€ T.

But v(1,#,2) =y and so (g(1,s’,u),y)eT,. Hence, if s’ #3, we
must have q(1, s’, ) # ¢q(1, s, u) and it follows that |T,| < |T,|. Similarly,
IT,| < |T,l, 8o that |T,| = |T,|.

ItT, #0,let (s,1)eT,, (t,y)eT,, and (u, 2) the unique element in
T such that (s,1)o(1%) (u,2) = (¢t,y). Since v(l,2,y) =y we must
have 2z = y. Now let (u, y), (%1, ¥), (%sy ¥)y ---, (u,,, y) be a distinct listing
of the elements in T,. Then each of (u,y)o(1%) (u; y) = (g(1, u, u), 1)
belongs to T',, since |T1| = k= |T,|—1 if w; # w;, q(1, u, u;) # q(1, u, uy).
Since for any (z, 1)e T, the equation (%, y) o(1*) (a, ¥) = (#, 1) must have
2 unique solution (a, y)e T, it follows that |T,| = |T,| —1.

Remark. Theorem 1 is of course true regardless of the element de-
leted from S =@ xV. We will need this observation in what follows.

THEOREM 2. Let (8., 0(1%)), (T, 0(1*)) and V' be as in Theorem 1.
Then (V7, 0(1)) is a subquasigroup of (V, o(1)).

Proof. We need only show closure. So, let # # ye V;, and let
(s, x), (t, y) be any two elements in 7. Then

(8, ) 0(1*) (t,y) = (Q(17 8,1),v(1, =z, y))f T.

Sinee # # y and both are different from 1 we must have v(1,z,y)eV;.
But z0o(1) y = »(1, =, y) and the proof is complete.

Remark. V; can of course be the empty set. As with Theorem 1
this last result is true regardless of the point deleted from S8 =@ x V.

COROLLARY 3. If (8., 0(1%)), (T, 0(1%)), and V' are as in Theorem 2,
then |V'|=1,2,3,0r 4 (mod 6). |V'|=1 or 3 (mod 6) if and only if V= V".

Now set @ = @, x{1}. Then (@, o(1*)) is as ubquasigroup of (S,., o(1*))
which is isomorphic to (@,, o(1)). |

THEOREM 4. Suppose that |Q,| =2p—1> |V|, where 2 and p are
relatively prime, and that |Q,| i not divisible by any n =1 or 3 (mod 6)
such that 1<n<|V|. Then (@,0(1%)) is the only subquasigroup of
(810, 0(1%)) of order |Q,l.

Proof. Let (T,o0(1%)) be a subquasigroup of (8., (L*)) of order
|Q,] and let V' = {we V |(p,v)e T}. If |V'| =1, then T — @ and we are
through. To see this, suppose V' = {x} and let (s, ), (t,z)e (T, o(1%)).
Then (s, ) o(1*) (¢, #) = (¢(1, s, 1), (1, =, @)} = (¢(1, 8,t),2). Hence =
=o(l,w,2) =1. If |V'|> 1, it follows from Theorem 1 that |T,| = |Tw|
=1t> 2 for all v, we V;. There are two cases to consider.
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(i) 1€ V'. In this case |@Q,| = mi—1, |@| = mt, where m = |V’|. Since
1e V', m =2 or 4 (mod 6). Since (T, o(1*)) and (Q, 0(1%)) are subquasi-
groups, t—1 = |T,| = |Tn Q| =1 or 3 (mod 6) gives t = 2 or 4 (mod 6).
Since |@] is divisible by 2 but not by 4 and m > 2, ¢ = 0 which cannot be.

(ii) 1¢ V’'. In this case m =1 or 3 (mod 6) and so |Q,| = mt, where
1< m< |V|. But |@Q,]| is not divisible by any integer = 1 or 3 (mod 6)
strictly between 1 and |V|.

Combining (i) and (ii) shows that |V’| =1, which completes the
proof.

THEOREM 5. Let (@, q(,))) and (V, v(,)) be Steiner 3-skeins with |Q|
=2p > |V|+1,2 and p relatively prime, and |Q}—1 not divisible by any
n =1 or 3 (mod 6) such that 1 < n < |V|. Then if (@, q(,))) has m NATS,
then so does the direct product (Q XV, qv(,,)).

Proof. Suppose that (@, 0(1)), (@2, 0(2)), ..., (@m, 0(m)) are NATS
of (@,4q(,)). Then, by Theorem 4, (8,,),0(1,1)), (Sg,1, 0(2,1)),.
(S(m,1)» 0(m, 1)) are NATS of (8 =@ xV, vq(,)).

Example. In [7], Mendelson and Hung have constructed a quadruple
system (@, q) of order 14 having 2 NATS. Since 13 is a prime, taking
(V, v) to be a quadruple system of order 2, 4, 8, or 10 gives quadruple
systems of orders 28, 56, 112, and 140 each having at least 2 NATS. Many
more examples along these lines are easily obtained.

‘4. Non-isomorphic Steiner 3-skeins with isomorphically paired asso-
ciated Steiner quasigroups. The main results in this section are based on
the following theorem, the proof of which can be found in [6]:

THEOREM 6. Let (Q, q(,,)) and (V, v(,,)) be Steiner 3-skeins with (V, v(,,))
containing no subsystem of order |Q|. If for any n > 1, where n is the order
of & subsystem of (V, v(,)), 1Ql/n # 2 or 4 (mod 6), then the only subsystems
of (@ XV, qv(,,)) of order |Q| are the |V| disjoint copies (@ X {v}, qv(,,)) of
(@, 4(;,)) for each v in' V.

COROLLARY 7. Let (@, ¢1(,))) and (@, qa(,y)) be non-isomorphic Steiner
3-skeins with isomorphically paired associated Steiner quasigroups. Let
(V (5)) be @ Steiner 3-skein containing no subsystem of order |Q| and such
that if n > 1 and is the order of a subsystem of (V, v(yy)), then |Q|/n # 2
or 4 (mod 6). Then the direct products (@ xV, q,v(,,)) and (@ XV, g29(,,))
are non-isomorphic to isomorphically paired associated Steiner quasigroups.

Proof. (@ XV, ¢,v(,,)) and (@ x V, ¢,9(,,)) are clearly non-isomorphic.
Since the associated Steiner quasigroups in (@, ¢,(,,)) and (Q, ¢a(,,)) can
be isomorphically paired, there exist two distinct listings of the elements
inQ, ®y, @y ..., ¥, a0d Yy, Yy, ..., Yy, Such that (Qx ’ 0(-’”{)) and (Qy y 0 ?/z))
are 1somorphlc Let a; be any 1somorph1sm from (Qz‘, o(x;)) to (Qw o(y‘))
We extend this to a mapping a; from @ onto @ by defining x;a; = ¥;.
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Now (z;,j) and (y;,j) with ¢ =1,2,...,¢9 and j =1,2,...,v are two
distinet listings of the elements of @ x V.

Claim. The Steiner quasigroup associated with (x;, §)in (@ XV, ¢,v(,,)}
is isomorphic to the Steiner quasigroup associated with (y;,j) in
(@XV, €:9(,,))- Let » be a map from @ x V\{(z;, j)} into @ x V\{(y;;, j)}
such that (¢, v)y = (qa;, v). y is clearly 1-1 and onto. To see that y is in
fact an isomorphism let (x,, ¥,) and (x;, ¥,) be any two elements in
Q x V\{(«;, j)}. Then

((wn Y1) o(@;, §) (@2, yz))y = (41(51’:7 T1y Ta)y V(Jy Y15 ?/2))'}’
= (q2(@i) B2, B2) 035 0(5, Y15 ¥2)) = (Q2(Yis @10, Baai), ©(f, Y1, ¥s))
= (®1a4y Y1) 0(Ysy J) (%204, Yo) = (@1, Y1) ¥ 0(Y5, §) (T3, Ys) ¥

Example. Let (@, ¢,) and (@, q;) be the pair of non-isomorphic
Steiner quadruple systems of order 14 constructed by Mendelsohn and
Hung in [7] with isomorphically paired Steiner triple systems. Actually,
all of the associated triple systems are isomorphic to the same Steiner
triple system of order 13. Then taking (V, v) to be any quadruple system
not containing a subsystem of order 14 gives a pair of non-isomorphic
quadruple systems of order 14|V| with their associated triple systems
isomorphically paired. For example, taking (V, v) to be of order 2, 4, 10,
or 20 gives a pair of non-isomorphic quadruple systems of order 28, 56,
140, and 280 with isomorphically paired triple systems.

3. Problems. (1) Construct a Steiner quadruple system of every order
n > 14 having at least two NATS (P 934). (2) Are there any quadruple
systems of order » having n» NATS? (P 935) (3) Construct a pair of non-
-isomorphic quadruple systems of every order n > 14 having isomorphically
paired associated Steiner triple systems. (P 936)
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