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1. Introduction. Throughout this paper, N, Z, and R will always denote
the sets of all non-negative integers, integers, and reals, respectively.

The notion of the so-called difference property was first introduced by
de Bruijn in [1]. He asked what can be said about a function f: R— R
which satisfies the following condition:

(1) for each heR the function 4, f: R— R defined by
Ay f(x):= f(x+h)—f(x), xeR,

belongs to a given class % < RR.

It was shown that for a great number of important classes .# the
function f may be written in the form

(2) f =TI+g, where ge # and I': R— R is an additive function, i.e. it
satisfies the Cauchy functional equation

I'ix+y)=T(x)+I(y), x,yeR.

If any function f: R — R satisfying (1) is of the form (2), then the class
F is said to have the difference property. De Bruijn ([1], [2]) proved the
difference property for the class of all continuous functions, k times differen-
tiable functions, analytic functions, absolutely continuous functions, functions
with bounded variation, and for some other classes. Afterwards, some of de
Bruijn’s results have been generalized in various directions (cf, e.g., [3], [4],
[6], and [8]). Among others, Carroll [3] pointed out the difference property
for the class of all complex-valued continuous functions defined on a locally
compact Abelian group and for the class of all complex-valued Riemann
integrable functions on a locally compact second countable Abelian group.
In the case of compact groups the commutativity assumption may be
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omitted and some stronger results hold true. On the other hand, Carroll and
Koehl ([4], [8]) noted that instead of complex-valued functions one can
consider functions with values in a complex Banach space to obtain similar
results.

In connection with what was mentioned above the following considera-
tions seem to be very natural. Let (G, +) be a locally compact Abelian
group and let (X, ||‘|) be a complex Banach space. Given hy, ..., h,e G we
define inductively the difference operator 4, ., with increments hy, ..., h, as
follows:

Ay f(x):=f(x+h)— f(x), xeG;
Ahl...h,,f3= Ah,,(Ahl...h,,_ 1 N, feXC
If hy =... = h, = h, then we write briefly 4} f instead of 4, ,f Additionally,
<~

we put 47 f = f. "
A function f: G — X is said to be a polynomial function of n-th order if
and only if

A7 f(x) =0 for all h, xeG.

It is well known (cf. [5], Theorem 3) that f: G — X is a polynomial
function of n-th order if and only if it has a (unique) representation

f=fothit...+h

where f, is a constant vector from X, and f;: G— X for i=1,...,n are
diagonalizations of i-additive symmetric functions F;: G' — X, ie.,

fix):=Fi(x,....,x), xeG,i=1,...,n

Following Kemperman [7] we introduce

DerINITION. A class & < X© is said to have the difference property of
n-th order (ne N) if and only if any function f: G — X such that

(3) 4r fe # for each heG
admits a decomposition

4 f=TI+g, where I': G — X is a polynomial function of n-th order and
geZF.

Suppose # is closed with respect to the addition and let it contain all
constant functions. If for each he G the operator 4;| ; does not lead out of
Z, then every function f of the form (4) satisfies (3). Indeed, it suffices to note
that the operator 4j is linear and if I' is a polynomial function of n-th order,
then 4; T is constant. Since any polynomial function of first order is a sum of
a constant and an additive function, the class # has the difference property
of first order if and only if it has the difference property in de Bruijn’s sense.
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The natural question arises which of the classes considered by de Bruijn
have difference properties of higher orders. The purpose of this paper is to
prove that for any ne N the class of all continuous functions on a locally
compact Abelian group and the class of all Riemann integrable functions on
a compact second countable Abelian group have the difference property of
n-th order.

2. Difference properties on compact groups. In the sequel the phrase
“Banach-valued function” will refer to a function with values in a complex
Banach space X. Riemann integrability of a function defined on a locally
compact Abelian group G will always be understood as Riemann integrabili-
ty with respect to the Haar measure on G. All topological groups are
supposed to be Hausdorff.

We start with some preliminary lemmas.

LemMaA 1. Let (G, +) be a locally compact Abelian group and let f e X©.
If for each he G the function A}, f is continuous (Riemann integrable), then so is
the function A, ., f for any system of n elements hy, ..., h,eG.

One can derive this lemma from Theorem 2 in [5] which, under our
assumptions, guarantees that

Ay ..n, S (X) = Y ridlf(x+v), xeG,
ieJ
where J is a finite set, r; are some rational numbers, and u;, v;e G depend
only on hy, ..., h, for ieJ.

LEMMA 2. Suppose (G, +) is an Abelian group. Let F: G"— X be a
symmetric n-additive function and let f: G — X be the diagonalization of F.
Then for any x, k,, ..., k,—-,€G we have

n|n—l

(3) Akl...k,,_lf(x) =35 Z Fky, ..., ki, kiy ..oy Ky 1)+
i=1

+n!'F(x, ky, ..., k,_ ).

Proof. We shall make use of the following two known formulae for
diagonalizations of symmetric n-additive functions (see [5], Lemma 2 and
formula (15)):

_ n!F(kl,...,kp) for p:n,
(6) Akl...kpf(x) = {0 for p>n,
n—1 n
(7) A S(x) =Y <i)Fﬂx,...,x, k, ..., k).
i=0 v Z N\ ~ ’

n—1

The proof of our lemma will be by induction on n. For n = 1, relation
(5) is trivially fulfilled. Now, assume (5) is true for some n > 1 and let f be the
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diagonalization of a symmetric (n+ 1)-additive function F: G"*! — X. Then,
according to (6), (7), and the induction hypothesis, we get

Akl...k,,f(x) = Akz...k,,(ﬁk, f(x))

" 1
=Ak2...k"(z ("f )F(x, oo X, ki, ...,kl))

i=0 —_—— ———
i n+1-i

n+1 n+1
= Akz...kn (n_l)F(kl’ kl’ X, oeny x)+Ak2...k"( n )F(kla Xy ooes x)

n—1 n

+1
— (:_l)m—l)!F(kl, ky, ky, ..., ko) +

1\n! & 1
+(n+ )n_z F(ky, ..., k;, k,-,...,k,,)+(n+ )n!F(kl,...,k,,, X)
n )22, n

n 2z
=(nz ) Y Fky, ooy ki kiy ooy k) +(n+DVF (x, Ky, ...y k).
i=1

Thus we obtain (5) for n+ 1. This completes the proof.

LEMMA 3. Let (G, +) be a topological locally compact group and let X be
a locally convex metrizable linear topological space. If yy: G — X is a function
bounded on some open non-empty set U < G and for every he G the function
A, W: G — X is continuous, then Y is continuous.

For the proof of our lemma the following result of Namioka [9] is
useful:

LemMA 4 (cf. [9], Theorem 4.1). Let T be a locally compact regular
topological space and let X be a locally convex metrizable linear topological
space. If Y. T— X is a weakly continuous function, then there exists a dense
Gs-set A c T such that Y is continuous at each point of A.

Proof of Lemma 3. Let us choose an arbitrary continuous functional
x*e X*. There is a neighbourhood V of zero in X such that x* is bounded
on V. Since y (U) < aV for some a > 0, the function x* oy is bounded on U.
Moreover, for each he G the function

dp(x* oY) = x* o d, ¥

is continuous. By virtue of Lemma 2.2 in [3], x* oy is continuous, and since
x* has been arbitrarily chosen, ¢ is weakly continuous. Lemma 4 implies, in
particular, that ¥ is continuous at some point x,€G. The equality

Y(X) = A ygrx, ¥ (X=X, +X)+¥ (X=X, +X),  x€G,

ensures the continuity of y at any point x, e G, which was to be shown.
It is worth-while to note that Lemma 3 enables one to apply (without
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any essential changes) the methods used in [3] in order to prove the
following

THEOREM 1. Let (G, +) be a locally compact topological group (not
necessarily Abelian) and suppose X is a Banach space. If f: G — X is such that
for each he G the function

Gx—A4,f(x):=f(x+h)—f(x)
is continuous and the function
Gox =V, f(x):= f(h+x)—f(x)

is Borel measurable, then f =T +g, where g: G — X is continuous and I': G
— X is an additive function.

Carroll and Koehl have proved Theorem 1 under the additional as-
sumption that G is metrizable (cf. [4], Theorem 2.2). Koehl has removed the
metrizability assumption but he had to assume that G is Abelian (cf. [8],
Theorems 2.1 and 2.2).

We shall also make use of Lemma 3 in the proof of the principal results
of this section which read as follows:

THEOREM 2. Let (G, +) be a compact Abelian topological group. Then for
each ne N the class of all Banach-valued continuous functions defined on G has
the difference property of n-th order.

THEOREM 3. Suppose (G, +) is a compact second countable Abelian
topological group. Then for each ne N the class of all Banach-valued Riemann
integrable functions defined on G has the difference property of n-th order.

The proofs of Theorems 2 and 3 are based on similar ideas, and
therefore they will proceed paralelly. Suitable changes will be enclosed in
parentheses.

Proof of Theorem 2 (and 3). For n = 0 both theorems are obvious.
Suppose that they hold true for some n—1e N. Take an f: G — X such that
for each he G the function 4} f is continuous (Riemann integrable). Let u
denote the Haar measure on G with u(G)=1.

We define the function F,: G"— X by

1
(8) Fo(hy, ..., h):= n—!gA;.,...h,,f(y)du(y), hy, ..., heG.

The commutativity of superpositions of difference operators implies the
symmetry of F,. For any hy, ..., h,_y, h,, h,eG we have

1
Fo(hys ..y ooy ythy) = nt jAhl...h,,_1.h;,+h;;f()’)dﬂ(}’)
‘G

1
= ;1‘!(5;[4».1...;.,,_ oS+ hy)+ 4n,.h,_ 1-'-;.'f(3’)] du(y)

L4
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1 1.
= ;l—!-gAhl,..hn_ l,h',,f(}"i' hy) d”(y)-’-ﬁé‘;Ahl""'n- 1"';;/((”‘1"-(1')

= Fll(hl’ ceey hh—l’ h;)+F"(h1, ceey hn—l’ h;:)

Together with the symmetry of F, this means that F, is a symmetric n-
additive function.

Let f, be the diagonalization of F, and let g,:=f—f,.

Now, fix arbitrarily a system of n—1 elements k,, ..., k,_,€G and put

Y(x)i= 4y, k-, 9n(%), Xx€G.
By Lemma 2 and (8) we obtain
|//(X) = Akl...kn_ 1 [(x)—-A’(l...k"_ 1 j;l(x)

n!n—l
= Akl...k"_lf(x)—_z_ Z Fn(kl’ st kl" ki’ L] kn—l)—'
i=1
—n!F"(X, kh EERD) kn—l)
ln—l
= Akl...k,,_lf(x)_i Z jAk,‘..k,-.k,-...k,,_lf()’)dll(J’)—
i=1G

—‘.!Ax»kxmkn— 1 S du(y)

ln—l
= f[Akl...k,,_lf(x)—— Z Akl...k,-.k,-...k,,_lf(}’)"‘
G 2.5

—Ax.kl...k,,_lf()')]d”(y)a XGG.
Setting

n—1

1 :
q’x(y):= Akl“'kn—lf(x)——j z Akl...k,-,k,-...k,,_lj(,V)_
i=1

_Ax.kl...k,,_lf(y)9 x, yeG,

in view of Lemma 1, we get for each fixed xeG a continuous (Riemann
integrable) function ¢,: G — X. Moreover,

n—1

1
Ap o (y) = —3 Z 4y Ak,...k,-.k,-...k,,_lf()’)—
25

—[nkyony  SO+X)=Apsyip_ SO, b x, yeG.

Since every continuous function on a compact domain (every Riemann
integrable function) is bounded, for each he G the values of ||4,¢.(y)|| are
uniformly bounded in all x, yeG. By virtue of Lemma 2.1 in [3] which
remains valid for Banach-valued functions if the absolute value sign is
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replaced by the norm sign, we infer that ||, (y)— ¢, (0)|| is uniformly bound-
ed in all x, ye G. Let us note that

ln—l
¢.(0) = A,k f(x)—iigl Aiy ik 4 f(0)—

— Ak S )+ Ay ok, S(0)
| 1

=73 > Ay gy SO+ iy i, S(0),
i=1

which is constant as a function of x. Consequently, there exists an M > 0
such that ||¢.(y)]| < M for all x, ye G. Hence

Il < flloxWlldu(y) <M,  xeG,
G

and since

AW (%) = Apiey. k-4 f(x)—Ah.kl...k,,_lfn(x)
=Ah.kl.--kn_lf(x)_n!Fﬂ(h’ kl,...,k"_l), XEG,

in the case where the assumptions of Theorem 2 are satisfied the function
4, is continuous for each heG. From Lemma 3 it follows that ¢ is
continuous.

Under the assumptions of Theorem 3 the function ¢: G2 — X deter-
mined by

o(x, »):=@. (), (x,yeG?

fulfils all the conditions assumed in Lemma 2.3 of [3] with X = Y=G. It is
enough to check that, for any fixed yeG, ¢(x, y) is a Riemann integrable
function of x. Indeed,

n—1

@(x, y) = Akl...k,-lf()é)-z 'Zl Ay iy gy S (V) —

S TR A UL 5 B N JW)
n—1

1
= —A)'-kl-"tn— 1 f(X)—E Z Akl""‘l"ki"‘hn— 1 f(y)+
i=1
+A ok SO, X, yeG.
Since

Y (x) = [o(x, ydu(y), xeG,
G

we conclude by Lemma 2.3 of [3] that y is Riemann integrable.
Summing up what we have shown we conclude that, for any
ki, ..., k,_,€G, Ay ke 9n is a continuous (Riemann integrable) function.
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By the induction hypothesis there exist a polynomial function I',_,: G - X
of order n—1 and a continuous (Riemann integrable) function g: G — X such
that

gn = rn-l+g'
Hence
f=fn+gn =fn+rn—l+g'

This completes our proof.

CoroOLLARY 1. Let f: R— X be a mod 1 periodic function such that, for
each he R, A}, f is continuous (locally Riemann integrable). Then there exist a
polynomial function I': R — X of n-th order and a continuous (locally Riemann
integrable) function g: R— X such that f=T +g.

Proof. Any mod 1 periodic function f: R — X may be regarded as a
function on the compact group K:= R/Z. More precisely, if x: R— K is a
natural homomorphism, then f: K — X is well defined by

fle(x):=f(x), xeR.

It is easy to check that, for each heK, 4}f is continuous (Riemann
integrable) if so is 4} f for each he R. Theorems 2 and 3 yield the decomposi-
tion f=I'+§ with a polynomial function I: K — X of n-th order and a
continuous (Riemann integrable) function §: K — X. Again, I" and § generate
functions I and g on R by

F(x):=T(x(x), g@x):=3(x(x), xeR.

Then f=TI+g, which was to be shown.

3. Difference property on locally compact groups. Now, using the struc-
tural theory of locally compact groups we are going to prove the difference
property of any order for the class of all continuous functions defined on an
arbitrary locally compact Abelian group. In the first step we obtain the
following

LemMMma 5. For each neN the class of all continuous Banach-valued
functions defined on R has the difference property of n-th order.

Proof. The assertion of our lemma holds true for n = 0. Assume it is
true for some n—1e N and consider an f: R— X with the property that for
any hy, ..., h,eR

(9)  4n,..a, [ is continuous.

Without loss of generality we can suppose that f(0) =f(1). Otherwise, it is
enough to prove the lemma for the function f;:

Ji):=fx)-[f(D)-f(O]x, xeR.
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Now, we define the mod 1 periodic function f*: R— X by
[*x):=f(x), xe[0,1),
f*(x+1)=f*(x), xeR.

We are going to show that for any h,,..., h,_,€R
(10)  4y,..n,_,(f—f*) is continuous.

For, let us fix a ke Z and choose x,, xe[k, k+1), x tending to x,. Then, by
virtue of (9), we have

Apyony (=X = Apyn,_ (=S *)(x0)

= Byyn (fOI= =)= du b, (f (x0)=f (xo—kK)

= —dnyny_ -k S X+ n,_ -1 S (X)) =0 as x— xo.
Now, let xo =k+1, xe(k, k+1), and let x — xo. Then

£ (xo—(k+1) =£(0) =£ (1) = (xo—k)

and, consequently,
Apy.my_y (f_f*)(x)_Ahl...h,,_ N (f=S*)(x0)
= Ay (SN =f = R) =y, (F (x0) =1 (x0—(k+1)))
= -Ahl...h,,_1.—kf(x)+Ah1...h,,_1,—kf(5¢o) —0 as x—xo.
By the induction hypothesis we can write
f-f*=T+g
for some continuous function §: R— X and a polynomial function I': R —» X
of order n—1.
From (9) and (10) it follows that for any h,, ..., h,e R the function
Ay, ..n, f* is continuous. Hence, applying Corollary 1, we obtain f* = I'*

+g*, where I'*: R— X is a polynomial function of n-th order and g*: R
— X is continuous. Thus

f=U=H+f* = (T+T*+@G+g*),
which completes the proof by induction.

. In the next step we are going to establish the difference property of an
arbitrary order for the class of all continuous functions defined on the direct
sum of two groups knowing that the class of all continuous functions on
each of the two groups admits difference properties of any orders. For this
purpose we need the following result which is due to Namioka (cf. [9],
Theorem 1.2):

LEMMA 6. Let X be a locally compact Hausdorff space, let Y be a locally
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compact und o-compact space and suppose Z is a metric space. If a map f: X
x Y— Z is continuous in each variable separately, then there exists a dense G4-
set A < X such that f is jointly continuous at each point of A xY.

Now, we can prove

LeEmMMA 7. Let (G, +) and (G,, +) be two locally compact Abelian groups
and let either of them be og-compact. Suppose that the class of all continuous
Banach-valued functions on G; has the difference property of any order for i
=1, 2. Then, for each neN, the class of all continuous Banach-valued
functions defined on the direct sum G, @ G, has the difference property of n-th
order.

Proof. The case n =0 is obvious. Suppose the assertion is true for

some n—1eN.
Let f: G, ®G,— X be such that for any h,,..., h,eG, ® G, the
function 4, ., f is continuous on G, @ G,. If we set

(P(X):=f(x, 0)9 xEGla
Y (»):=1(0,y), yeGy,
then for each ue G, and ve G, we have
A:QD(X) = zlu.O)f(x’ 0)9 xXe Gla
Ay (y) = 4io,n f(0,y), yeGy,

getting the continuity of 4]¢ and A4)y. Our assumptions guarantee the
existence of polynomial functions I'y: G, - X and I',: G, — X both of n-th
order and continuous functions g,: G, —» X and g,: G, — X such that

o(x)=T(x)+g,(x), xeGCy,

V() =T.0+9.(», yeG,.
Let us define f*: G, ® G, — X by the formula

[ x, p):i=f(x, y)—e(x)=y(y)
=f(x, ,V)_f(X, 0)_f(0, ,V), (x’ y)EGl @GZ-
For arbitrarily fixed h,,...,h,_,eG, ® G, we consider the function
¢ G, ®G, — X given by
¢:= Ah,...h,,_lf*‘

From the following two equalities we obtain immediately the continuity of ¢
in each variable separately:

S(x, y)i=dp; n,_ [*(X,)
= (Ahl.“hn_ 1 Aoy f(x, 0))—4;.1...5:,,_ 1 S0, y)
= (Ahl""'n—l A(x.O)f(O, y))_Ahl...hn_ 1 f(x, 0)'
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From Lemma 6 it follows in particular that there exists a point zoe G, @ G,
at which ¢ is (jointly) continuous.

Now, it is easy to prove that ¢ is continuous everywhere on G; ® G,. In
order to check the continuity of ¢ at a point z, e G, @ G, note that 4. _. ¢
is a continuous function, which is readily seen from the following expansion:

Azl—zoé(x’ y) = Azl_z()'hl"'hn—l f(x, .V)_'

_Azl —ZO'hl"'hn- 1 f(x’ 0)—Azl —zo.hl...hn_ 1 f(O’ .V)-
Finally,

Szyth) =4, .8 (zot )+ E(zo+ W) — 4, -, E(20) +E(20) = & (2y)
| as h— 0.

Thus, for arbitrarily fixed h,, ..., h,_,€G, @ G, we have obtained the
continuity of A,,l‘_‘,,"_lf*.

By the induction hypothesis it is possible to find a polynomial function
I'*: G, ®G, — X of order n—1 and a continuous function g*: G, ® G, - X
such that f* = I'* +g*.

Now, we can write

fx,9) =1*(x, y)+e(x)+y¥(y)
=TI*(x, y)+g*(x, Y+ (x)+g, (x)+T2(0)+g2(»),
(%, 9€6,®G,.
Put
I'(x,y):=T*(x, )+ (x)+(), (x,9eCG, ®G,,

gx, y):=g*(x, y)+g9,(x)+g:(»), (x,y)eG, ®G,.
Evidently, g is continuous on G; ® G,, and by the identity
Afuty T(x, y) =450 T*(x, )+ 45 T () + 457 TL(p),
(u, v), (x, y)€ Gy @ Gy,

I' is a polynomial function of n-th order. The induction argument completes
the proof.

The main structure theorem for compactly generated Abelian groups
states (see [10], pp. 98, 99, and 110) that every Abelian group generated by a
compact neighbourhood of zero is the direct sum G, @ G,, where G, is a
compact group and G, is an elementary group of the form R* @ Z° (a, be N).
So, by virtue of Theorem 2, Lemma 5, and Lemma 7 applied sufficiently
many times, we are able to establish difference properties of arbitrary orders
for the class of all continuous Banach-valued functions on a compactly
generated Abelian group. It remains to extend this result to the general case
of locally compact Abelian groups. For, we need still some tools.

9 — Colloquium Mathematicum LIII.2
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LemMma 8. If (G, +) is an Abelian group and H is a subgroup of G, then
there exists a mapping w: G/H — G such that

() w is additive, i.e., w(A+B) = w(A)+w(B) for all A, Be G/H;

(i) w(A)e A for all AcG/H.

Proof. Consider the family # of all couples (F, w), where F is a
subgroup of G/H, w: F — G is additive, and w(A)e A for any AeF. We
order # assuming that (F,, w,) precedes (F,, w,) if and only if F, is a
subgroup of F, and w,|r, = w;. Let ¢ be a chain in #. If we put

F:=!F: (F, w)e%)}

and determine &: F — G by @&(A):=w(A4) for AeF such that (F, w)e%,
then we easily get (F, @)e #. By the Kuratowski-Zorn Lemma there exists in
# a maximal element (F,, w,) dominating ({H!, 0)e #. If it were F, # G/H,
we would be able to find a Be G/H such that B¢ F,. Let F|, be the subgroup
generated by F, and {B}. Choose an element b from B and define wg: Fy
— G by

wo(A+kB):= wo(A)+kb, AeF,, keZ.
Evidently, (Fy, wp) belongs to # and it strictly dominates the couple
(Fo, we), which contradicts the maximality of (F,, wg). Thus Fy = G/H and
the proof is complete. '

LEMMA 9. Let (G, +) be an Abelian topological group and let H be an
open subgroup of G. Suppose that the class of all continuous Banach-valued
functions defined on H has the difference property of each order. Then for any
ne N the class of all continuous Banach-valued functions defined on G has the
difference property of n-th order.

Proof. Our lemma holds true for n = 0. Suppose the same for some
n—1eN and consider an f: G— X such that for any h,, ..., h,e G the
function 4, ,, f is continuous on G.

Let us choose an additive mapping w: G/H — G with the property that
w(A)e A for all A G/H. Such a choice is possible by virtue of Lemma 8.
Since any x from G belongs to some coset of H, the formula

f*(x):=f(x—w(A4) if xeA for some Ae G/H

determines a function f*: G — X.

Observe that for any hy, ..., h,_,€G the function 4, ., _ (f—f*) is
continuous on G. Indeed, since any coset of H is open, it is enough to show
that all restrictions of 4, ., _ ( f—f*) to cosets of H are continuous. For,
choose an AeG/H, take x,, xe A and allow x to tend to x,. Then

Ahl...h,,._ 1 (f_f*)(x)_dhl...h"_ 1 (f=f*)(x0)
=My (f) = (x—(A)) = A4, b, , (S (x0)=f (xo— ©(4)))

= _Ahl...h,,_1,—w(A)f(x)+Ahl...h,l_1,—w(A)f(x0) -0
as x — xq, Xe A.
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In view of the induction hypothesis we have f—f* = '+, where I': G
— X 1s a polynomial function of order n—1 and §: G — X is a continuous
function. Let fo:=f*|y =f|y. Then, evidently, 4, 4 fo is continuous on H
for any fixed hy, ..., h,e H. By the assumptions of our lemma, we can find a
polynomial function I'y;: H— X of n-th order and a continuous function
go: H— X such that f, = I'y+g,. Let us define I'*: G - X and g*: G- X
by the following formulae:

r*(x):=ro(x—w(4) if xeA for some AeG/H,
g*(x):=go(x—w(A4)) if xeA for some AcG/H.
Using again the fact that all the cosets of H form an open covering of G, one
can easily verify that g* is continuous on the whole G.
Now, we shall show that I'* is a polynomial function of n-th order. Let

x, yeG, xeA, yeB for some A, BeG/H. Then for any jeZ we have
x+jye A+jB and

I*(x+jy) = To(x+jy—w(A+jB)) = [o((x —(4)+j(y— o (B)).

Hence
n+1

£ = Y (—1)"+1-f("f1)r*(x+jy)
j=0 J

n+1

=j§O( 1)n+l ;(n‘]i‘l)ro((x w(A))‘l'J(y a)(B)))

=4} s To(x—w(4) =0
Finally, note that f* = I'* +g*; indeed, if xe 4 for some AeG/H, we have
[*(x) =f(x—(A)) = fo(x—w(A4)) = [o(x—w(A4)+go(x—w(A))
=I*(x)+g*(x).

Thus, f= ([ +I'*)+(§+g*) and the proof is complete by induction.
Now, we can prove the main theorem of this section.

THEOREM 4. If (G, +) is a locally compact Abelian group, then for each
ne N the class of all continuous Banach-valued functions defined on G has the
difference property of n-th order.

Proof. Let U = G be an open neighbourhood of zero with the compact
closure. Consider a subgroup H of G generated by U. Obviously, H is an
open and compactly generated group. Lemma 9 and the considerations
following the proof of Lemma 7 complete the proof of the theorem.

Remark. One cannot expect that the class of all continuous functions
on any Abelian topological group which is not necessarily locally compact
has difference properties of arbitrary orders. Carroll [3] has noted that it
fails to hold even for the difference property of the first order.
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