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1. Kuczma has researched in [2] the equation

(1) fle+y) =f(@)+f(y) for xe@, ye H

for functions f: G — K, where G and K are arbitrary groups (written
additively), and H is a subgroup of G.

The author of [2] has given the general solution of equation (1)
under the assumption that every homomorphism g: H# — K can be ex-
tended to a homomorphism g: G — K. We shall determine the general
solution of equation (1) without any assumption on H. This answers
a question of M. Kuczma (}).

We start with the following obvious

LEMMA 1. A function f: G — K satisfies (1) iff there exists a homo-
morphism g: H — K such that the following equalities are satisfied:

(2) fle+y) =f(@)+g(y) for xe@, ye H,

(3) fy) =g(y) for yeH.

Now we give the general solution of equation (2).

THEOREM 1. Let g: H — K be a homomorphism. A function f: G - K
i8 a solution of equation (2) iff it is of the form

(4) f@) = h(u)+g(—u+x) for zeu+H, ue U,

where U = G i8 a selector of the family {x+ H},.4 (i.e., for every ze@,
Un(x+ H) is a one-element set), and h: U — K is an arbitrary function.

(1) Asked at the Conference on Cauchy’s functional equation, Jaszowiec, May
1973.
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Proof. Let f: @ — K satisfy (2) and let U be an arbitrary selector
of the family {x+ H},.;. We put

() h(u) = f(u) for ueU.

Let ve w+ H, where we U. Then —u +xe H, so that, by (2) and (5),
we obtain

f@) =flu+(—u+2) =fu)+9(—u+2) = h(w)+g(—u+a).

Thus f can be represented in form (4).

Conversely, suppose that a function f: G —- K is of form (4). Let
ze@, ye H and take e U so that xe w4+ H. Then also x+yeuw+ H.
Using (4), we obtain

J(@+y) =h(u)+g(—u+z+y) = h(u)+g(—u+2)+9(y)
= f(®)+9(y)
which completes the proof.

COROLLARY 1. A function f: G — K 8 a solution of equation (1) iff
it 18 of form (4) and h satisfies additionally

(6) h(uo) = g(uo), where {uy} = UNH.

Proof. By Lemma 1 and Theorem 1, it is enough to prove that,
for any function f: @ — K of form (4), where g: H — K is 2 homomorphism,
(3) is equivalent to (6). Obviously, (4) yields

f(@) = h(ug)+9(—uy+2) for ze H.

Thus (3) is equivalent to the equality

g(z) = h(ug)+9(—uo+2) for zeH,

which holds iff » satisfies (3).

COROLLARY 2. Let g: H — K be a homomorphism which can be extended
to & homomorphism g: G — K. Then a function f: G — K is a solution of
equation (2) iff it can be represented in the form

(7 f(x) = h(z)+g(x) for ze@,

where h: G — K is an arbitrary function which is constant on the left cosets
of H in Q.

Proof. Clearly, any function f of form (7) is a solution of equation (2).
Conversely, suppose that a function f: G — K satisfies (2). Then, by
assumption, Theorem 1 yields

f(@) = h(u)+g(—w+x) = h(w)+g(—u+2)
= h(u)+g(—u)+g(x) for veu+H, ueU.
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Putting k(x) = h(u)+g(—u) for ve u+H, ue U, we obtain (7).

Using Lemma 1 and Corollaries 1 and 2, we can reprove the following
result, obtained by Kuczma in [2], p. 314:

CorROLLARY 3. If every homomorphism g,: H — K can be exlended
to a homomorphism g,: G — K, then the general solution of equation (1)
can be written in the form

f(®) =h(x)+g(®) for ze@,

where g: @ — K i3 an arbitrary homomorphism and h: G — K is an arbitrary
Sfunction which is constamt on the left cosets of H in G and h(y) = 0 for ye H.

2. We are going to show further that if G is an abelian group and
f: G - K satisfies equation (2) (equation (1), respectively) in a suitable
subset of G x H, then f satisfies equation (2) (equation (1), respectively)
in G x H. We adopt the following

Definition (cf. [1], p. 61, for abelian case). A non-empty family
of subsets of a group G is called an invariant proper ideal if

(i) 8;, Sz S implies 8, USze S

(ii) 8,e S and S, = 8, imply S,¢ S;

(iii) G¢ S5

(iv) for every e G and Se.#, we have x+ 8¢ # and v —Se JS.

The following lemma has been suggested to the author by R. Ger:

LEMMA 2. Let S be an invariant proper ideal of H and let Se S. Then,
for any ye H, there exist y,, Yy, H\S such that y = y,+y,.

Proof. By (iv), (i) and (iii), we have SU(—S8+vy) #* H. Hence there
exists a y, with y,e H\S and y,¢ —S+y. Putting y, = y—vy,, we get
Y1 H\S and y = ¥, +9,.

LeEMMA 3. Let S be an invariant proper ideal of H, let Se #, and let
g: H — K be a homomorphism. If a function f: G — K 3atisfies the equation

(8) fle+y) =f(x)+g(y) for xe G\H, ye H\S,
then
fle+y) =f(x)+9(y) for xeG\H, ye H.

|
Proof. Let xze G\H and ye H. Take y, and ¥, as in Lemma 2. Then
x+1vy,¢e G\H. Now, using (8), we obtain

fle+y) =f@+y,+ys) = fl@+y,)+9(ys)
=f(@)+9(¥)+9(Y2) =f(@)+9(y,+Y2) = f(®)+9(y)

which completes the proof.

De Bruijn has proved (cf. [1], Theorem 2) & result which can be
formulated as follows:
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LEMMA 4. Let H be an abelian group, lét S be an invariant proper
ideal of H, and let Se¢ #. If & function f: H — K satisfies the equation

J@+y) =f(@)+fly) for xe HN\S, ye H\S,
then

fle+y) =f(@)+f(y) for veH, yeH.

Now we shall prove the following

THEOREM 2. Let H be an abelian subgroup of a group G and let g: H -~ K
be & homomorphism. Let £ be an invariant proper ideal of H, let Se S and
suppose there exists an xge H\S such that, for all z, ye H\S,

(9) rx+ye H\NS or zxy+xe H\S or x,+yeH\S.

If a funcltion f: G — K satisfies the equation

(10) f@+y) =f@)+9(y) for vcG\S, ye H\S,
then
(11) fle+y) =f(e)+g(y) for zeG, ye H.

Proof. Let z,¢ H\S be such that, for all , y¢ H\ S, assumptions (9)
hold. We put

(12) a(@) = —f(@g) +f(xo+x) for xe H.
From (10) we obtain

(13) a(x) = g(x) for xe H\S.
We prove that

(14) a(x+vy) = a(x)+a(y) for x, ye H\S.

According to (9), there are three cases to be considered. If 2 +y « H\ S,
then (14) follows from (13) and from the assumption that g is a homo-
morphism. If z,+xe¢ H\S8, then, by (12), (10) and (13),

a(@+y) = —f(@o) +f(@+ax+Y) = —f(a) +f(wo+x)+g(y)
= —f(@o) +f(@s) + 9 () +9g(y) = a(x)+d(y).

The case where x,+ye H\S is analogous to the preceding one.
Applying Lemma 4, from (14) we obtain

(15) a(z+y) = a(®)+a(y) for z, ye H.

As we have proved in Lemma 2, H\ § generates H. Since ¢ is 2 homo-
morphism, this together with (13) and (15) implies that

(16) a(x) =g(x) for zeH.
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It follows from (12) and (16) that
= flxe+x) = f(xy) +9g(x) for xe H.
Hence, for z, ye H, we have
f@+y) =flwe+(—mo+2+y)) = f@) +9(— T+ 2 +¥)

= f(@)+g(—xo+2)+9(y) = f(@o—xo+2)+9(¥)
= f(x)+g(y).

An application of Lemma 3 now completes the proof.
Remark. L.et H be an abelian group and let S <« H. If

(17) (—2z,+8+8)NS =9,

then condition (9) is satisfied.
In fact, if zo+2¢8 and z,+ye S, then, in view of (17),

c+y = —2x)+ (xg+2)+ (2o +y)e H\S.

COROLLARY 4. Let H be an abelian subgroup of a group G, let S be an
invariant proper ideal of H, and let Se #. Suppose there exists an rye H\S
such that (9) holds for all x, ye H\S. If a function f: G — K satisfies

(18) f@+y) =F@ +f(y) for weG\S, ye H\S,
then )
(19) fle+y) =f(x)+f(y for xeG, ye H.

Proof. By applying Lemma 4, from (18) we obtain

fe+y) =f(=)+fly) for ze H, ye H.
Let us put
(20) 9(y) =f(y) for ye H.

Then the function g is a homomorphism. Putting (20) into (18),
we get
fle+y) =f(x)+g(y) for zeG\S, ye H\S,

and, consequently, from Theorem 2-

flw+y) =f(x)+9(y) for 2@, ye H.
Hence, by Lemma 1,'(19) holds. This completes the proof.
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