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Let D be the family of functions f holomorphic in 4 = {z: |z|] < 1} such
that '

f1f'@PPdxdy < +0  (z=x+iy).
a4

In [3], [4] and [6] it was proved by various methods that if fe D, then

1
f '(re“’) =0 [m]

for almost all 8. In this paper we give an elementary proof of this result as well
as the analogous one for higher derivatives. We first prove that if fe D, then

" . 1
£ | f(k)(te‘9)| dt =0 [U-")‘Tm]

for k = 2, 3, ... and almost all'8. This behaviour of the radial variation of f® is
then used to prove that the radial growth of f® is o[1/(1—r)?*~1/2] for
k=1,2, ... and almost all . We prove that these results are sharp. When
k = 1, we obtain the result mentioned above. We also show how f®(re®) tends
to o (as r—1) when we allow no “exceptional values” of 6. Let

)= ;ia,z"'

and set

- o]

M@, f)= ) lalr O<r<1).

n=0
Note that

M(r, f) = max|f(z)l < M(r, f).

|z|=r .
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We prove that if fe D, then

M(r,f"")=o[ l'] for k=1,2,...

a-n

This result is sharp.
LEMMA 1. If fe D, then

1
mn . [(1=0)* 2| f®(re) 2 tdt < + 0
0 .

for k=1,2,... and almost all 0.

Proof. Since fe D, we have

2z 1

§ L1 te®)? tdr] d6 < + o0,
0 o
and so, by the Tonelli theorem, *

1
[1f'(t€®)?tdt < + 00 for almost all 0,
0

and so (1) holds for k = 1. Parseval’s equality gives

(2 zj." |f®(te®®)|2 do = 2n i [n(n=1)...(n—(k—1))]? la )2 25,
0 n=k
We recall that
F@+1)r@+1)
IF'a+p+2)

1
(1=t etdt = for a> —1 and > —1
0

([1], p. 331). Applying this formula with « = 2(k—1) and = 2n—2k+1 gives

1 -2kt g r2k-1)
(3) g(l _t)Z(k 1) t2 2k+1 dt = (2n)- . .(2n_(2k_2))

for n > k. We infer from (2) and (3) that

2r 1

@) [ [(1=1/%2| fOe) 2 1dedo = 2x Y byla?,
00 n=k

where

_[ntn=1)...(n—(k—1))]? _
bu = (2n)...(2n—(2k—2)) F2k=1).
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We deduce from (4) that

2x 1

(5) [ (fA—0)**2|f®(te*)|? tdt)d0 < + 0.
o0

It follows from (5) and the Tonelli theorem that (1) holds.
We next prove our main theorem.
THEOREM 1. If fe D, then

r 1
6) {I f®(te®®)| dt = o I:(—I:;)Tﬁ—:m]
for k=2,3,... and almost all 0. Also, we have
) 1
7 IfOre®) = o [m]

for k=1,2,... and almost all 6.

Proof. Let k # 1 be any positive integer and fix 6 so that (1) holds. For
this 0, given ¢ > 0 there exists r, (0 <r, < 1) such that

(8) 3‘ 1= 2| f®@te®)2dt <e* (r> ;'o)-

We note that

o) [1/® ) dt = [ 1F O de+ [ | (ee®) dr.
0 0 ro

The Cauchy-Schwarz inequality implies that

(MEWMMQMWHWMWMGF%#Wf

It follows from (10) that

p ; 1 1 1 12
(11) r{lf(k)(te‘”)| dt < 8J2k—3 [(1 —r)z"‘3.—‘(1 —ro)"“3] :

For this fixed ¢ and r, choose r > r, sufficiently near 1 so that

(12) 'fl f®(e) dt < 8(—17)(121:-—3)/2'

It follows from (9), (11) and (12) that for all r sufficiently close to 1 we have
(13) (1—r)2k=302 g |f®(te'®)| dt < 2e.

Hence (6) holds.
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We note that (7) follows from (6) and thc; inequality

(14) F®re®) < |FOO)+ [I/* Ve de  (k=1,2,..).
0

Remark. For k = 1, (7) is known to hold uniformly in Stolz angles. The
arguments used to prove this fact are not so elementary as those given above
and can be found in [3], [4] and [6]. It would be interesting to find an
elementary proof that (7) holds uniformly in Stolz angles given the assumption
that it holds radially. It is not difficult to prove this under the additional
assumption that f is univalent or that

lim |f'(z)) = + 0
uniformly in a Stolz angle. We do not give the proof here.

In the next theorem we show that (6) and (7) are sharp in a very' strong
sense. The construction is similar in some respects to one carried out in [5] by
the first-named author and MacGregor.

THEOREM 2. Let & be a positive function on (0, 1) such that
lim &(r) = 0.
r—1-

Then there is a function g in D for which

1—r)?~ 12 min |gP(2)|

15 lim . lz|=r
( ) r—+1- 8(")

for p=1,2,... Also,

+ 00

I e e e T
(16) fim { d }_ +oo
r—1- 8(7')

for all 6 and p=1,2,...

Proof. To prove (15) it suffices to show that such a function g exists which
has the following property: there is a sequence {r,} such that

os<r <1, lmr=1

k— o

and, for every 6 and every p,

@ -y rigo o 5 500
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for all sufficiently large values of k. It is clear that (17) implies (15) by first
applying (17) with & replaced by ./e. Let

@)= i,
n=1 n

where {4,} is a strictly increasing sequence of positive integers, suitably selected
in terms of ¢ in a manner described below. Define

o(2) = if(r) d.

It is easily verified that ge D. We will prove that there is a sequence r, such that
for every 0 and for every p

18) (1=rp 12|10, ) > 200,

Since gP(z) = f®~V(z), (18) will imply (17). We construct inductively the
sequence {4,} as follows. Let 4, =4, and if 4,, 4,, ..., 4 are already
selected, then let A, be so large that

(19) A = (-1 +2)%,
(20) e(1—1/4,) < 1/k.

The existence of such A, is quite obvious.
Inequality (19) implies

@) AeetGper—1) > &Y

A,(A,—1)

forn=1,2,...,k. .To see this note that 4, > k and (19) imply that
A= (k+1)? fork=1,2,...

Hence
Aerr (e =1 2 (A —1) = (R +4) 44— 1),
and so
k+1)?
bt s =02 [+ 00+ k4 021 4G - > 0 6y

forn=1,2, ...,k and (21) holds.
Let r,=1—1/4, for n=1,2,... and let k be any positive integer.
Then

(22) fP@r. e’ =A4A+B+C,
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where
23) A="T B (o= D) e,
n=1
: 1 )
(24) B= 2?4 —-1)...(4—(p— 1))E(r,, e'%)t=p
and
(25) C= i A2 (A, — D...(4,—(@- 1))-'1;(r, e'%)in=p,

n=k+1

We are only interested in k large, and so assume 4, > p. Also the sum in (23)
takes place for values of n for which 4, > p. Inequality (21) and the fact that
{4,} is increasing imply that

|4 < 2° {z R2G=1)... (=~ 1»(1 _Ai)"'
k

n=1 n
3/21(31: 1= 1) (-1 —(p— 1)) 1. A=t
k—1 X
(A2 AR ey = ). (e~ (P — 1))
<2 {,z, k=17
s = D). (e~ 1)
k—1
<2 ((: 12)2+k11) 32 Gaey = 1) (s —(p— ).
Hence
9) A1 < 2 2 = ) a1 1),

F rom (24) and (26) it follows that
14| 2,,(2k—3)k/1”’1 Ax-1—1)...(Ak-1—(p-1)) 1
|B| < k=12  BPA=1)...(4—@-1) Q-=1/3)* "

(k—3)k (,1,-1)3/2 1
(k—1) (1=1/2)%"%

Inequality (19) implies that 4,_ /4, —0 as k — co. It follows from this fact and
(27) that A/B—0 as k— + co. Therefore,

(28) 4| < £IB|
for all large k.

(27)

<2
k
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To estimate |C| note that if 4, > p, then for each n > k we have
Ilsll'zl ()'n-i-l'_'l).-.(j.n.'.l—(p—l))(n+1)_l(rkeia)lu+l_P|

(29) 1232 (A, —1)...(Ay— (0= D))n~ L (r, €% 7|
< [1n+1—1..+l.."(l’— 1)]"*112 (1 —_l_)z..u—z..
A’n—(p—l) 'lk
1 An+1—A4n
A

Now observe that the function y defined by
y=xP*12g* for x >0,
where p> 0 and 0 <a < 1, is decreasing for x > x,, with

p+3

¥ = Tloga’
Note also that (19) implies
(30 ’ har=dy > 223 2.
Therefore, by (29) and (30) we have

) @® A,z( n 2p+1(1 _ ).,2,
Gy Ia< 2[12’“(1—11) ]|B|= 3 Uk LAY

n=1 x 1= A2P*1 (1= 1/A,)%
Since
lim 4221 (1—1/4)% = 0,
k— o0
we have
(32) IC] < B

for all large k.
From (20), (22), (28), (32) and (24) we find that, for all large k,

1 a,

(p) i S S—
(33) I:f (rkea)l >2k(l—rk)”+”2’

where
a,=r(—1 +2r,‘)...(1 —-pp-D+(- l)rk)(l —1/4)%"?.

Since a, »1/e as k— oo, we have a, > 4 for large k. This, (20) and (33) yield
inequality (18).
It is clear that (16) follows from (15).
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THEOREM 3. If fe D, then

(34) M(r, f®) =o [(1 _lr).]

s
[~N

for k=1,2,...
Proof. Clearly,

- o]

M@, f®) < ¥ n*la,,

n=k

and so by the Cauchy-Schwarz inequality we have

(39 M(r,f(")) < mz—:l ok la,| +( i nla,.lz)”z( i p2k—1 rzn)n/z.
n=k n=m n=1

It is easily verified that

G oo L]

(see [7], pp- 38 and 224). Hence there exists 4 > 0 such that

a0 _ " A
(36) (n; n2k~1p2n)~12 < a—rF O<r<1).
It follows from (35) and (36) that
(37) A—=r*M@r, f®)<1-rf mil n*la,|+ A( i nla,?)'2.
n=k n=m

Since

lim ) nla|*=0,

m=ocon=m

(34) is easily deduced from (37). Specifically, given ¢ > 0 choose m so that

Y nla,|* < &% For this fixed m choose r sufficiently close to 1 so that

m—1
(1=r* > n*la,l <e.
n=k

We then have (1 —r)* M(r, f®) < (1+ A) ¢ for all r sufficiently near 1, and hence
(34) holds.

Remark. It.follows from (34) that

oflog(1—r)~1] for k=1,

(38) . {If(k)(tew)l dt = {0 [(1 _r)—(k"l)] for k = 2’ 3, v
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This contrasts with the almost everywhere radial variation of f/® exhibited in
(6). In [2] Cowling proved that

M(r,f)=o[/log(l—r)"'] for feD

and this result was proved to be sharp by Yamashita in [8]. The example of
Yamashita can also be used to prove that (34) and (38) are sharp.

REFERENCES

[1] T. Apostol, Mathematical Analysis, Addison-Wesley Publishing Company, 1974.

[2] V. F.Cowling, A remark on bounded functions, Amer. Math. Monthly 66 (1959), pp. 119-120.

[3] T. M. Flett, On the radial order of a univalent function, J. Math. Soc. Japan 11 (1959), pp. 1-3.

[4] F. W. Gehring, On the radial order of subharmonic functions, ibidem 9 (1957), pp. 77-79.

[5] D.J. Hallenbeck and T. H. MacGregor, Radial growth and variation of bounded analytic
Junctions, Proc. Edinburgh Math. Soc. (2) 31 (1988), pp. 489498.

[6] W. Seidel and J. L. Walsh, On the derivatives of functions analytic in the unit circle and their
radii of univalence and p-valence, Trans. Amer. Math. Soc. 52 (1942), pp. 128-216.

[7] E. C. Titchmarsh, The Theory of Functions, Oxford University Press, 1939.

[8] S. Yamashita, Cowling’s theorem on a Dirichlet finite holomorphic function in the disk, Amer.
Math. Monthly 87 (1980), pp. 551-552.

DEPARTMENT OF MATHEMATICAL SCIENCES INSTITUTE OF MATHEMATICS

UNIVERSITY OF DELAWARE TECHNICAL UNIVERSITY OF WROCLAW
NEWARK, DELAWARE 19716, US.A. WYBRZEZE WYSPIANSKIEGO 27

PL-50-370 WROCLAW, POLAND

Regu par la Rédaction le 1.9.1987;
en version définitive le 17.3.1988



