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for pe M, any smooth vector fields X,, ..., X,, and any section w of the
bundle A* T*(M, C). The symbol (- | -> is here the standard duality between
the vector spaces AT,(M, C) and AT} (M, C) for any pe M, defined by
Wy AoAap|wy AL..Aaw)y equal to 0 if k#I and equal to
det [w;(v,); i,j < k] if k =1 (cf. [7]). Thus we have the exterior differential dw
of a k-form o defined by the formula

() do(Xy, .o Xesy)
k+1

= Z (—l)iH ‘Ain_)(Xl, ceos Xicts Xiv gy oo Xiwn)
i=1

+ Z (—l)i+jd)([xia X_]]’ Xla [RRR) Xi—l’

i<j

Xi+la LR ] Xj—l’ Xj+l’ cevy Xk+l)

for smooth vector fields X,, ..., X,,, on (M, C). Denote by F*(M, C) the
set of all k-forms being smooth sections of A* T* (M, C). The operation d
defined by (2) (cf. [5]) has the following properties:

(1) dx(p)(v) = v(a) for v in T,(M, C) and a€C;

(il) d(w, +w,) = dw, +dw, for w,, w,e F*(M, C):
(iii) d(w A n) =dw A n+(—1)*w A dy for ke F*(M, C), neF'(M, C);
(tv) dod = 0.
This yields by C-regularity of (M, C) that

(v) if we F*(M, C), U is open in (M, C) and w|U = 0, then dw|U = 0.
For any smooth mapping

" (3) f: (M, C)—(N, D)

and any pe M we have the tangent linear mapping

f-p: ’Tp(Ms C) - T}(p)(N, D)

defined by the formula (f,v)(f) =v(Bof) for BeD(f(p), where -D(q)
= J|Dy: ge Vertp) (cf. [2]), and for any vector v in T,(M, C).

If (M, C) and (N, D) are of finite dimensions, then for any weF*(N, D)
we define the form f*we F*(M, C) in a way such that for any pe M and any
vectors vy, ..., vy, in T,(M, C)

4 Wy A A (o) () = foptr Ao A Sl o(f (D))
From (4) and (1) we get

SroXy, ., X)) =Lf,X (D) Ar... A f, XD |o(f(p)) for peM.
For a given mapping (3) we have then the so-called f-pull-back w —f* w. We
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remark that if g: (N, D)— (N, D), then for any 0eF*(N’, D) we, have
(gof)*0 = f*g*0.

LemMaA. If (M, C) and (N, D) are differential spaces of finite dimensions,
then for any smooth mapping (3) and any form weF*(N, D) we have

(5) df*w = f*dw.

Proof. Let pe M. We have to prove that (df* w)(p) = (f*dw)(p). The
hypothesis that (N, D) is of finite dimension yields that there exist a
neighbourhood Bert, of f(p) and smooth vector fields V;, ..., V, on (N, D)
such that V;(q), ..., V,(q) is a base for T,(N, D), qe B. Then (cf. [6]) there
exist functions ¢,, ..., ¢, D such that

Viif(p)(e) =96, i,j=1,...,n.
From continuity of functions ¢y, ¢/ it follows that at any point g of some
neighbourhood of f(p) we have the non-singular matrix

(6) V(@) (); i,j<n].

We may assume that such a neighbourhood is B. Let us take the matrix
[74(q); h, i < n] being inverse to (6). We have then

h (@) Vi(q) (&) = o},
Thus
(7) y;'(AViSjIB=6j, h’jzl,.”,n.

Equalities (7) yield yj e Dg. From D-regularity of the differential space (N, D)
it follows that diminishing, if necessary, the set B we can find an extension of
functions 7} to functions belonging to D. Denote these extensions also by .
Next, we set

E.(q =7,(@QVi(q for geN, h=1,...,n.

We have then the smooth vector fields E,, ..., E, which according to (7)
satisfy the conditions

(‘Ehele =6, hj=1,...,n.
In particular, E,(q), ..., E,(q) form a base for T,(N, D), ge B. Set for ge N
(8) a(q) = | Y w(E,, ..., E,—k)(q)dsi'(q) A.onde*(q).

We have
de’ () (E:(q)) = Ei(q)(&)) = (0g,¢)(q) = 6] for qeB.
Thus de’ is a 1-form on (N, D) such that CE(q)|de'(q)> =61, i,j=1,...,n
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For any ge B we have a base de'(q), ..., de"(g) for (T,(N, D))*. By (8), for
geB and h, <... < h, we get

CEp, (@) A ... NEy(9)|B(9))
= Y &, ... E)@<E @ A... NEy(@)de" (@) A ... nde*(g))

iy <...<iy

= Y @(E, ..., E)@det[3;; r, s <k]

i <...<ig
= @(Ey, -, En)(@) = By (@) A .. A Ep (@) ().
Hence @(q) = w(q) for ge B. Thus
9 w|B= ) @(E ...,E,-k)dsi1 A ... nde*|B.

ll’
i <...<ig

Let us remark that if w|B = w,|B, where w, w,eF*(N, D) and B is
open in (N, D), then

(10) f*o|f7'[Bl= f*o,|f"'[B].

Indeed, if w and w, are forms of degree 0, then f*w = wof and f*w,
= w, of, whereas for forms w and w, of degree k > 1 equality (10) follows
directly from the definition of the f-pull-back by formula (4).

Let B be a form of degree 0 on (N, D). For any vector v in T,(M, C) we
have

(f*dB)(p) (v) = (@B)(f (P)(S,v) = (f.0)(B)

=v(Bof) =v(f*B =d(f*B(v).
Thus
(11) f*dp =df*p.

Passing to the proof, by induction, of equality (5) we assume that (5) is
satisfied for any form of degree lower than k, k > 1.
Let us take B, B,, ..., B,eD and set

(12) w=Ppdpf, ... ndB,.
We have then f*w = f*(Bdf, A ... AdB,_) A f*dp,: thus, by (i), we get
df*w =df*(pdp, A ... NdB_y) Af*dB.+
H(= 1By A ... AdBi—y) Ad(f*dBy).
From (11) and (iv) it follows that d(f*dp,) = ddf* B, = 0. This yields
df*w =df*(Bdp, A ... ndBi_y) Af*dB,
=f*(d(BdBy A ... AdBi—1) A dBy)
=f*dBdp, A... NdB_, AdB) =f*dw.
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Equality (5) is satisfied for w of the form (12). Taking now any form
weF*(N, D) and pe M we state that there exist a neighbourhood B of f(p)
in (N, D), smooth vector fields E,, ..., E, on (N, D), and ¢, ..., ¢"e D such
that (9) holds. Assuming (8) for ge N and U =f~'[B] we have, in turn,

w|B=&®|B, (dw)|B=(dw)|B, (f*dw)|U=(f*dd)|U,
f*a)IU=( ¥ SHB(E;, ..., E)de* A ... Ade®)|U,
i <...<ip

d*o)|U=d Y f*@E,, ...,E)de* A...Ade¥)|U
i <...<ig

=( Y f*d(@(E,, ..., E)de* n... ndeW)|U
i <...<ip

=(f*d®)|U = (f*dw)|U.
Finally, (5) holds for any weF*(N, D), which completes the proof.

2. Singular simplices and chains. The standard k-dimensional simplex in
the Cartesian space R, ie., the set of all points (u', ..., u*) such that
0<u <1,i=1,...,k and u'+...+u* <1, will be denoted by 4,. Setting

u=®u, ..., u,

k
ttw=1-Y v, and rf@=u,i=1,..,k,
i=1

we have the baricentric coordinates t? (u), ..., tf(u) of the point u. In R* we
have the natural differential structure &, which consists of all C® real
functions on R*. This structure induces the differential structure &, 4, Of the
simplex 4,.

Every smooth mapping s: (4, &,)— (M, C) will be called a singular

k-simplex on (M, C) or, shortly, a k-simplex on (M, C). The set of all k-
simplices on (M, C) will be denoted by S,(M, C). Every function
c: S;,(M, C)— R such that the set of all seS, (M, C) for which c(s) #0 is
fimte will be called a singular k-chain on (M, C) or, shortly, a k-chain on
(M, C). The set of all k-chains on (M, C) will be denoted by C, (M, C).
For any seS,(M, C) and any real number a we set (as)(u) =a if u=s,
and (as)(u) =0 if s # ueS, (M, C). In such a way we have defined a k-chain
as on (M, C). It is evident that any k-chain ¢ may be written in the form

(13) c=c(sy)s;+-..+c(sy)sh,

where {s,, ..., s,} = {s; s€S;(M, C) and c(s) # 0}. It is convenient to write

c=)Yc(s)s

s
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instead of (13). Taking any smooth mapping (3) and setting for ce C,(M, C)
f* (C) = ZC(S)./.OS

s

we get the mapping f: C, (M, C)— C,(N, D).

The set C, (M, C) may be treated in a natural way as a linear space. We
have then a functor f+— f, from the category of differential spaces into the
category of linear spaces.

Now, we take the standard immersions 4, ;: 4, — 4,,, setting for any
ue 4,

(t] (u) if j<i,
(14) it (Aki(w) =<0 if j=1i,
H )  if j>i,

i=0,...,kand j=0,...,k+1. From this definition it follows that

A 140 Ak = Aisriv1 04k M B <L

For any seS,(M, C) we define the k-chain ds by the formula

k
(15) Os= )Y (—1ysod,_y,,
=0

which is called the border of s. For any k-chain ¢ on (M, C) we define its
border (¢ by the formula

(16) de =) c(s):0s.

Equalities (14){16) yield ddc = 0. Therefore, we may define the k-th singular
homology group H,(M, C) of the differential space (M, C).

3. Integration of forms along the chains. Let us consider the Cartesian
space R* with the natural differential structure &,. At every its point u we
have a base %, ..., &% of tangent vectors defined by the formulae A%, x
= ¢ 2(u) for any real function x being of class C* in some neighbourhood of
u; O is the partial derivation with respect to the i-th variable. Taking the

mapping
idAk: (Ak’ ('{;klk) —'(Rka 61‘)

we state that there exists a unique system aof vectors &,, ..., &, of the space
T.(4s, &iy) such that

idy, (&) =7 i=1,..k

This system is a base for T,(4;, &, 4)-
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Let seS,(M, C) and weF*(M, C). The integral

[(Au A A Bl s* 0 (u))du
Ak
will be denoted by [w. For any ceC,(M, C) we set

(17) fo=%c0) fo.

c s

The number {w defined by formula (17) will be called the integral of the form

c
w along the chain c.

THeoOREM (Stokes’ formula). If (M, C) is a Hausdorff differential space of
finite dimension, then for any form weF*(M, C) and any (k+ 1)-chain ¢ on
(M, C) we have

z[dw = a[w.

Proof. By linearity of the mapping
(c—fw): C,(M,C)—R

4

it suffices to prove that

k+1
fdo=Y (1) | @
s h=0 S04y p
or, which is equivalent, that
k+1 .
(18) [o=2 (=D [0,
ik+1 h=0 4,

where 0 = s* w and i;(z) = z for ze 4,. The number on the right-hand side of
formula (18) may be written as [ 0. Formula (18) takes then the form
g+ 1
(19) [ do= | 0.
ik+1 Ok+1
Formula (19) is nothing but Stokes’ formula known in advanced calculus (cf.
[6]). This completes the proof.

Stokes’ formula allows us to consider the de Rham mapping
((h, w)+—> <h, w)): H (M, C) xH*(M, C)— R

for a differential space (M, C) of finite dimension, where for any homology
class h in H,(M, C) and any cohomology class w in H*(M, C) we set

¢h, w) = [w, ceh and wew.

c
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