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The present paper provides some theorems on embeddability of
partial Boolean algebras in a broader sense into Boolean algebras. The
subject of the article is entirely inspired by physics. The physical back-
ground of the problem under consideration and the role of partial Boolean
algebras in foundations of physics are sketched in [2] and [3]. A partial.
Boolean algebra which can be embedded into a Boolean algebra is usually
called classical [3]. Interdependencies between the so-called abstract clas-
sical physical systems and classical partial Boolean algebras are given in
[3] (cf. also [4]). ‘

The article has the following structure. We begin with the defini-
tion of a partial Boolean algebra in a broader sense. Some useful com-
ments explain the origin of the notion. Further, we give the definitions
of a homomorphism, of a weak embeddmg and of an embedding of a par-
tial algebra mto a partial algebra. Next, we reach for the notion (or rather
construction) of direct limit of an ordered system of Boolean algebras.
The notion is due to Dwinger [1]. The usefulness of the notion in the domain
of partial Boolean algebras follows directly from the fact that any family
of Boolean subalgebras of a partial Boolean algebra forms an ordered
system of Beolean algebras. Using the notion of direct limit of Boolean
algebras we state first the auxiliary theorem (Theorem 2) and next we
prove the main theorems of the paper (Theorems 3-5).

Definition 1. By a partial Boolean algebra in a broader sense we
shall mean the system

(1) % = <B; {Cn}n>2’ Vi, _"1>

with the following properties: B is a set, 1 € B, for each natural integer
n > 2 C, is an n-ary relation in B (C, < B™) called the n-ary commeasurabi-
lity relation, v is a binary function mapping C, into B called the partial
Boolean sum in #, ~] is a unary function mapping B into B. The function
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1 is called the Boolean complementation in #. Moreover, we assume that

(1°) C,(a, 1) for all a € B;

(2°) it C,(ay, ..., a,), then C,(ay, ..., @y,) for every permutation
o of the set {1, ...,n} (C,(b,, ..., b,) means that <b,, ..., b,> € C,);

(3°) it C, 14y, ...y @y, Gy y,), then Cp(ay, ..., a,);

(40) if Cn(a’lr %y an)7 then Cn+l(a’lva27 @yy Qgy <oy au);

(6°) it C,(a,, ..., a,), then C,(7]a,, a,, ..., a,);

(6°) it Cy(a,, a,, as), then the Boolean polynomials ‘in a,,a;, a,
form a Boolean algebra.

(Condition (6°) is equivalent to a longer but more elementary one:
if Cy(ay, a,,a3), then a;vae; =a;va;, a;v(a;vae,) = (;vae)vae,, ete.
1<4,5<3))

The notion of partial Boolean algebra in a broader sense is connected
with the notion of so-called compatible family of Boolean algebras. The
remarks given in the sequel explain these interdependencies.

An indexed family of Boolean algebras
(2) {Z.: 2e 4},

where #, = (B;; vV, i, 1,), is compatible provided that
(i) 1, =1, for all u,» e A4;
(ii) if a, b € B,NB,, then av ,b =a v, b;
(iii) if @ € B,NB,, then |,a = 7|, a.
Let (2) be a compatible family. Then
B UB;;
Aed
1 1,, 2 — arbitrary;
e & —,a, where A is an arbitrary element of A such that a € B,;

avbEav , b, where 4 is an arbitrary element of A such that a, b € B,;

for each natural » > 2, C, is an n-ary relation in B: C,(a,, ..., a,)
iff there exists a 4 € 4 such that a, ..., a, € B,;.

Notice that a vb exists exactly if C,(a, b).

It is immediately seen that the system <{B; {C,}.5:) V, 1, 1)
we have defined fulfills the axioms of partial Boolean algebras in a broader
sense (conditions (1°)-(6°)). This system will be called the partial Boolean
algebra in a broader sense determined by a compatible family (2) of Boolean
algebras.

It turns out that any partial Boolean algebra in a broader sense
is determined by a certain compatible family of Boolean algebras. To
show this we need some definitions.

Definition 2 ([3]). Assume that # = (B; {C,},5s)V, 1, 1) is &
partial Boolean algebra in a broader sense. We say that the system
A = (A;v, 71, 1) is a Boolean algebra in # whenever
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(i) 1e A < B;
(ii) A x4 < Cy;
(iii) if a,, a3 € A, then a,va, € A4;
(iv) if a €e A, then Tlae A;
(v) if a,, a;, a3 € A, then

a,Vv (ayvag) = (a,Vva,)vas
and
a A (ayvag) = (a,Aa,)V (ayAay).

Obviously, every Boolean algebra in # is a Boolean algebra in the
usual sense.

Definition 3. Let # = (B; {C,},>:, V, 1, 1) be a partial Boolean,
algebra in a broader sense. We say that a Boolean algebra &/ = {(4; v,
1, 1) in # has property C whenever for every n > 2
() if a,,...,a,€ A, then C,(a,y,...,a,).

In [3], Corollary (1.1), the following theorem is proved:

THEOREM 1. Let # = (B; {C,},>:, V, 1,1> be a partial Boolean
algebra in a broader sense. Let A, be a subset of B such that C,(a,, ..., a,)
Jor any a,, ..., a, € Ay and every n > 2. Then there exists a Boolean algebra
o = {45 v, T, 1) in B with property C such that 4, < A.

Now, let # = (B; {C,}.5s, vV, 1, 1) be any partial Boolean algebra
and let {#,:1e A} be the family of all Boolean algebras in # having
property C. Notice that for each a € B we can find a 4 € 4 such that a € B;.

Hence
B = UB‘-
Aed

Define a relation C; as follows:

C(ay, ..., a,) iff there exists a 1€ A such that a,, ..., a, € B;.

Thus £* = (B; {C}},5:, vV, 1,1)> is the partial Boolean algebra
determined by the compatible family {%, : 1 € 4}.

We shall show that the partial algebras 4 and %#* are identical. It
suffices to prove that C, = C, for any n > 2. Let C,(a,, ..., a,) in &.
Then by Theorem 1 there is a 1€ A such that {a,, ..., a,} = B;. Hence
C,(ay, ..., a,). Now, let C,(a,, ..., a,). Then there exists a A such that
@1y ...y a, € B;. But %, has property C. Hence C,(a,, ..., ).

The notion of partial Boolean algebra in a broader sense is more
general than the notion of partial Boolean algebra in the sense of Kochen
and Specker [5]. Recall that a partial Boolean algebra in the sense of Kochen
and Specker, denoted by

(3) B =(B; 4, v, 1, ),
is given by a set B, a binary relation § on A4, a binary partial function
v from § into B (the partial Boolean sum in %), a unary function ™|
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from B into B (the Boolean complementation in #) and an element 1
of B. Moreover:

(1*) &, called the relation of commeasurability in #, is symmetric and
reflexive;

(2*) for all be B, b4 1 (the constant 1 is commeasurable with all
elements of B);

(3*) the partial function v is defined exactly for those pairs <(a, b>
of B xB for which a { b;

. (4*) if any two of a, b, ¢ are commeasurable, then (avbd){ ¢ and

“la g b;

(6*) if any two of a, b, ¢ are commeasurable, then the Boolean poly-
nomials in a, b, ¢ form a Boolean algebra.

For a partial algebra given by (3) and for each n > 2 define C, as
follows:

Cn(ay,y...,a,) iff @a;4a; forall i,j (1<1,j<n).

Then the system {(B; {C,},-,, vV, ~1, 1) is a partial Boolean algebra
in a broader sense. Notice that C, = 4. Conversely, suppose we are given
a partial Boolean algebra (1) in a broader sense such that for any n > 2
and all a,,...,a, € B:

(a;n) C.(a,...,a,) iff Cy(a;,a;) for all ¢,j (1<4,j<n).

Then, it is easy to check that {B; Cy, v, 71, 1) is a partial Boolean
algebra in the sense of Kochen and Specker.
It should be stressed that every Boolean algebra

(4) 2 =<B;v, 1,1

can be treated as a partial Boolean algebra in a broader sense. For a given
Boolean algebra (4), we set

C,,gB“ =BX...XxB, nx=2.
n times

Then the system
() (B; {Caluz2s v, 1,1
is a partial Boolean algebra in a broader sense. Obviously, the function v
is defined for any pair {a, b), a, b € B. This identification of a Boolean
algebra (4) with a partial algebra (5) is assumed in the following definition:

Definition 4. Let # = (B; {C,}us2y vV, 1, 1) and &' = (B’;
{Cu},,>2, v, ~1, 1> be partial Boolean algebras m a broader sense. Then:

A. A mapplng h:B — B’ is said to be a homomorphism whenever

(a,) if C,(a,, ..., a,), then C,(ka,, ..., ha,) (n = 2);

(a,) if Cy(a, b), then hi(av b) = havhb;

() B( @) = TI(ka);

(a,) 21 = 1.
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B. A homomorphism k: B — B’ is called a weak embedding if C,(a, b)
and a # b implies ha # hb in #'.

C. A one-to-one homomorphism is called an embedding.

D. An embedding h: B — B’ of type “onto” such that C,(a,, ..., a,)
iff C, (hay, ..., ha,) is called an isomorphism.

A partially ordered system of Boolean algebras (cf. [1], p. 320) is
a set {#,, fi.: A, u € A}, where A is a partially ordered set, %, is a Boolean
algebra for every Ae 4, and f,,: %, —~ %8, for A< puis a homomorphism
such that f;, is the identity map for every 4 € 4 and f,,0f;, = fi, whenever
A< pu<y.

The direct limit of a partially ordered system {%,,f,.:4,u € 4}
of Boolean algebras is a pair («#, {i, : 4 € 4}), where & is a Boolean algebra,
and 7, : #; - < for every A € A is a homomorphism such that

(i) ¢,0f;, = %, whenever A< u;

(ii) for every pair (¥, {h,: A € A}), where ¥ is a Boolean algebra and
h,:#;, -~ € is a homomorphism such that k,o f;, = h, whenever 1< y,
there exists a unique homomorphism kA : &/—% such that hoi, = h,; for
every Ae A.

It should be noted that direct limits always exist ([1], p. 320-322).
(o may be a trivial algebra!)

Now assume # = (B; {C,},>.y V, 1,1) to be a partial Boolean
algebra in a broader sense. Let {#,};.4 be the indexed family of all Boolean
algebras in # with property C. Let, by definition, 4 < u iff B; = B,, and
whenever 4 < u let f,, be the identity map from B, into B, . Then

(6) {#:, fiu: 2, €A}

is an ordered system of Boolean algebras. Notice that (A4, <) is a complete
meet semilattice. Now, let

(7) (L, {ia:1e4})

be the direct limit of the system (6).

Recall that </ is constructed as follows. Let (¢, {h; : 4 € A}) be the
Boolean product of the algebras {%,};.,. Let ¢, = h,(%,). Obviously,
€, is a subalgebra of € (i€ A). Hence the family {&,},., is compatible,
and thus forms a partial Boolean algebra in a broader sense, to be de-
noted by

€y = {0p; {Co}nz2, v, 71, L)

Let 4 be the ideal in € generated by the elements

(8) hi(a) A h,0f;,(a),

where a € B;, A < u, and A is the symmetrical difference. 4 need not be
a proper ideal. Let ¢ : € — ¥/, be the natural homomorphism and let
¢1 = plq, for every A€ A. Let i; = ¢,0h;. Then (€/4, {i: 1€ 4}) is the
direct limit of the system (6).
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Define the relation ~ in C, as follows:
z~y iff x=h(a)and y=h,(a)

for certain 1,,1, € 4 and a € B.

By independency of the algebras €,,1e 4, if ¢ # 0,1, then there
exist exactly one 4 and exactly one a such that # = h;(a). Moreover, ~
is an equivalence relation in

Go = ghA(B;.) .

Consequently, the ideal 4 is generated by elements of the form zAy,
where #,y € 0, and ¢ ~ y. Indeed, 4 is generated by (8). But for (8)
we have

hi.(a') ~ huoflp (a') .

Conversely, if # ~y and = = b, (a), ¥y = by, (a), then there is a
Ao < 4 (¢ =1, 2) such that a € B; . Hence

hi, (@) Abyo0f,5.(a), ©=1,2,
and, consequently,
hzlofaozl(“) A ha,0faa, (@) € 4, ie., xAyed.

Let |y, ..., |z,| € Cy/.. We define the n-ary relation C, in C,/. for
all n > 2 as follows:

C,(|z]y ... |2,|) iff there exist a,,..., a, € B such that @, = h, (a;)
for k =1,...,n, and C,(a,,...,a,) in &.

If C;(l«l,lyl) and @ = h,(a),y = h,(b), then there is a A, € A such
that a, b e B, . Let z, = b, (a) and y, = hy; (D). Obviously, # ~ x, and
Y ~9Y,. Then

dat
|| v Y| = 2oV Yol -
If |x| e Cy/_, then
Tl = [Tl

The relations C, and the functions v and 7] are well defined.

THEOREM 2 (). Let # = (B; {C,},>:y V, 1, 1) be a partial Boolean
algebra in a broader sense. Let €, be defined as above. Then:

1. The system €,/ = {Co/; {Cr}us2s vV 1, L¢) i8 & partial Boolean
algebra in a broader sense.

2. The fumction @y: Cy — Cy/_ defined by the formula @,(x) = || maps
homomorphically €, onto €,/...

3. # and €,/ are isomorphic.

We omit the easy proof.

() A similar theorem for partial Boolean algebras in the sense of Kochen and
Specker has been given in [2].
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We admit the following notation. If # is a partial Boolean algebra
in a broader sense and & € B, then

(—1)a= Tla and (+1)a=a.

The principal theorems of this paper, formulated in the sequel, give
sufficient and necessary conditions for a partial Boolean algebra in a
broader sense to be homomorphically mapped into a nontrivial Boolean
algebra, weakly embeddable into a Boolean algebra and, finally, embed-
dable into a Boolean algebra, respectively. We have decided to present in
detail only the proof of the first theorem. The proofs of the remaining
theorems are similar.

THEOREM 3. Let # = (B; {C,}.=2, V, "1, 1) be a partial Boolean
algebra in a broader sense. The following conditions are equivalent:

(i) There exists a homomorphism of & into a nontrivial Boolean algebra.

(ii) For every finite sequence @ = (a,, ay, ..., a,) of elements of B there
exists a sequence &(1), e(2), ..., e(n), where e(k) = —1 or e(k) = +1
(k=1,2,...,n), such that for every subsequence (@ , ay,, ..., a ) of
a with the property C,(ay , @, ..., a; ) the following inequality holds:

(9) Z\l e(k;)ay, #0.

Proof. (i)= (ii). Let » map homomorphically # into a Boolean
algebra & =<{4, v, 71,1>. For any finite sequence (b,,b,,...,b,)
of elements of A we can find a sequence (e(1),&(2), ..., £(n)), where
e(k) = —1lor e(k) = +1L (k=1,2,...,n), such that

/\ E(i)bi 9’—'0.
i=1

Consequently, for any subsequence (Brys Bigy <+ by,) we have

m

A 6(7“.')l’k,- #0.

i=1

Now, let @ = (a,, a,, ..., a,) be an arbitrary sequence of elements
of B. Hence there is a sequence &(1), £(2), ..., &(n) such that

n
A e@)h(a;) #0 in .
i=1
Take any subsequence (a; , a;,, ..., ) of the sequence a such that
Cpr(ayy Gy -+ -y @) in B. In particular,
m
A e(k)h(a,) #+0.

i=1

Since h is a homomorphism and C,(a,, a,, .., &, ), we infer that
inequality (9) holds in 4.
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(ii) = (i). Let, according to the previous notation, (¢/,, {i,:'4 € 4})
be the direct limit of the partially ordered system {%;,f,,: 4, u € 4} of
all Boolean algebras in # with property C. We shall show that under
assumption (ii) the ideal A is proper.

Let u, = 2 Ay, (K =1, 2,...,n), where x, ~ vy, (T, ¥; € C, and
k=1,2,...,n). Assumne that x, = h (%) and ¥, = h, (a,). Form the se-
quence a = (al, @3y ...y a,). Then there exist (1), 3(2), Y (n) such that

e(k)ag A ... Ae(ky)ay, #+0

for every subsequence (a , dy,, ..., @, ) of the sequence @ with the prop-
erty Cm(a'kly Bpyy +o vy O, )

Let A(. be the set of elements of A appearing in the sequences
(15 P2y +++y ) aDd (v, ¥, ..., »,). Then for every 4 e 4,

0 :,é bl = G(kl)akl/\ oo /\S(km)akm’

where (@, @z, ..y O,,) is the subsequence of @ consisting of elements
belonging to the algebra %#,. Hence

O, # hy(b:) = e(k)ha(ay) A oo Ae(ky)ha(ay,)

in the algebra %, = h,(%,). By independency of the algebras {%;};ca
we get

0, = A hi(by)
Aedy

in the algebra €. But
A (b)) < e(k) by, (@) = e(k)m,

ey
for 1 =1,2,...,n and
A () < e(k)h,, (a) = e(k)Ys

161’0

for ¥ =1,2,...,n. It follows that -

0, % A hz(bo<k7\l(s(k)w,,m(k)yk)< ,,7}1[—““”"“”"”‘

’-EAO

Hence
k\_/l (T, Ay,) # Le.

Let |lz|| denote the layer of the element x in €/, (¢ € C). We define
a mapping vy :¥,/_ — €/, by the formula y(|z|) = |z]. We check that
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y is well defined, i.e. if || = |y|, then |z|| = |ly|. Let # ~ y.Thenz Ay € 4.
Hence |iz|| = |ly|l. We claim that v maps homomorphically €,/. into ¢/,.
It is obvious that y(|#|) = "1(y(l#])) and that y(|lg]) = |L¢ll is the unit
element in ¥¢/,. Suppose that 'C,(|z|, ly|) in €,/.. Hence # = h,(a),
y = h,(b) and Cy(a,b) in B. There is a A, € A such that a,b € B; . Let
@ = hy (a) and y, = b, (D). Then. :

(@l v 1Y) = p(12el v 1%0l) = ¥(IZoVYol)
= @ VYol = lzoll v lgoll = p(iz)) v v(iy]).

This completes the proof of Theorem 3.

In a similar manner one can prove the following theorems (see [2],
p. 74):

THEOREM 4. Let # = (B; {C,},>sy V, 1, 1) be a partial Boolean
algebra in a broader sense. The following conditions are equivalent:

(i) # is weakly embeddable into a Boolean algebra.

(ii) For every finile sequence & = (ay, ay, ..., a,) of elements of B and
any a; belonging to (ay, Gy, ..., a;) (a; # 0) there exists a sequence
(e(1), £(2), .. ., &(n)), where e(k) “1orsk) =+1L (k=1,2,...,m),
such 1/ at

1 e(ty) = +1;

2. for every subsequence (ay , @y,, ..., ) of @& with the property
Con (g tryy ooy Oy) inequality (9) holds.

THEOREM 5. Let # = (B; {C,},>:) vV, “1,1) be a partial Boolean
algebra in a broader sense. The following conditions are equivalent:

(i) # is embeddable into a Boolean algebra.

(ii) For every finite sequence @ = (a,, Az, ..., a,) of elements of B and
any two distinct elements a; and a;, (a; # a;) belongmg to (a, Gy ..., @,)
there exists a sequence (s(l),e(2),. ,e(fn), where &(k) = —1 or e(k)

=41 (k=1,2,...,m), such that

1. either a(il) = +1, €(%) = —1 or &(¢,) = —1, €(y) = +1;

2. for every subsequence (ay , @, ..., a; ) of @& with the property
Con(Gryy gy eey Oy,) inequality (9) holds.

Theorem 4 may also be formulated in terms of the direct limit of
the system (6):

THEOREM 4°. Suppose that B = (B; {C,},52y vV, 1, 1) i3 a partial
Boolean algebra in a broader sense. Let (6) be the partially ordered system
of Boolean algebras in B with property C, whose direct limit is (<, {i,: AeA}).
Then, for every A € A, h; i8 a monomorphism of &, into <« iff B satisfies
condition (ii) of Theorem 4.
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