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LATTICE ORDERED GROUPS OF FINITE BREADTH

BY

J. JAKUBIK (KOSICE)

The purpose of this note is to give the solution to a problem by
Birkhoff (cf. [1], Problem 121) concerning lattice ordered groups (I-groups)
-of finite breadth (see Section 2). Let @ be an I-group, and consider tho
following conditions on G:

(a) There are elements z, ye G such that # < y and 2x < 2v.

(b) There are elements z, ye G such that # # y and 2x = 2y.

There exist I-groups G satisfying (a) and (b) (cf. [1], p. 291, Example
5); Birkhoff asks if the pathological behaviour defined by conditions
{a) and (b) can occur in an I-group of finite breadth.

We show that the answer is positive; for each positive integer n > 1
there is an I-group G such that the breadth of G equals » and G fulfils
{a) and (b). It is not hard to verify that an I-group G has finite breadth
n if and only if there exists a disjoint subset 8 = G with cardS = »n and
if no disjoint subset of G contains more than » elements. Such I-groups
were studied by Conrad and Clifford [4] (for n = 2), Conrad [2], Kokorin
and Hisamiev [6] and Kokorin and Kozlov [7]. In [2] (cf. also [3], where
a more general situation was dealt with) it was proved that any such
l-group G is a small lexicographic sum of linearly ordered groups A,
(¢ =1,...,n), where {4,}}, = & is the system of all maximal linearly
ordered subgroups of G. We show that, for a lattice ordered group of
finite breadth, condition (a) is equivalent with any one of the following
conditions:

(¢) There exists A;¢ & such that 4, is not normal in G.

(d) There exists 0 < ae G such that the interval [0, a] is a chain and
a is disjoint with some of its conjugates.

1. Preliminaries. For the standard concepts concerning lattices and
lattice ordered groups cf. [1] and [6]. We recall the following notions
(cf. [3]):

Let G =(G; A v, +) be an l-group, a,be@, a<b. The interval
[a, b] is the set {xe G: a < x < b}. A subset X < @ is convex if [z,, ;] =« X
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whenever x,,z,¢e X and z, <x,. A subset Y < G is called disjoint if
y > 0 for each ye Y and y, A ¥y, = 0 for any pair of distinct elements
Y1, Yo Y. A system & of convex l-subgroups of G is said to be disjoint
if for any two distinct I-subgroups A4,, A;¢ ¥ and any a,e A;, ae A,
we have |a;| A |a,] = 0. A disjoint system & is said to be maximal if it
is not a proper subset of a disjoint system of convex Il-subgroups of G.
Let Y be a convex l-subgroup of @ and ze¢@. If || A |y| = 0 for each
ye Y, we write Y da.

Let X,,..., X, be convex l-subgroups of G such that the group
(G5 +) is the direct sum of X; (¢ = 1,...,n) and, for any u«x;¢X;,
2+ ... +x, >0 if and only if ;> 0 for ¢ =1, ..., n. Then the l-group
G is said to be an Il-direct sum of its l.subgroups X;, and we write
G =X,®... X, _

More generally, let 7 = {X,} ({e I) be a system of convex I-subgroups
of @ such that the group (G; +) is the discrete direct sum of groups (X,;; +)
(7€ I). Suppose that, for any finite subset {3,, ..., 7,} = I and any Ty € Xy
the relation #; + ... +; >0 implies 2, >0 (k =1,...,n). Then &
is the l-direct sum of the system J and we then write @ = Y @ X; (1€ I).
If ¢1y...,4, are distinct elements of I, #;e X; and o =a; +... + @, ,
then we put z;, = z(X,).

Now let I be a linearly ordered set and, for each ie I, let X; be an
l-group such that X, is linearly ordered whenever 4 is not the least element
of I. Let H be the system of all mappings f: I - (JX,; with f(¢)e X; for
each ieI. For fe H write I(f) = {teI: f(¢) # 0}. Let G be the system
of all fe H such that I(f) is well ordered. We define in G the operation -+
componentwise and we put f> 0 if I(f) 0 and f(s,) > 0, where 1,
is the least element of I(f). Then @ is an I-group and it is called the lewi-
cographic product of l-groups X;; we denote it by G = I'X; (i€ I).

Let A be an l-ideal of @ such that g > a for any ae A and geG*\A.
Then @ is a lexicographic extension of A and we then write G = {(4).
A lexicographic extension G = (4A) is non-trivial if G = A.

Let &, &,, ... be systems of non-zero convex Il-subgroups of G and
K ={1,2,...}. For any ue K let A, be the convex Il-subgroup of @ that
is generated by the set | JAY, where &, = {A{} (ieI,). Assume that the
following conditions are fulfilled:

(i) The system &, is maximal disjoint.

(ii) If x is a positive integer, 1 < u and ¢e I,, then either A{ equals
Af~! for some ¢,¢ I,,_, or there is a convex l-subgroup B of G and a finite
subset {jy, ..., Jm} = I,_;, m>1 such that B = 4;7'®... ® 4} and
A¥ is a non-trivial lexicographic extension of B.

(iii) 4, =2 @ Af (ieI,) and 4, is an l-ideal of G for y =1, 2,...

(iv) ¢ = UA, (ueE).
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Then G is said to be a small lexicographic sum of l-groups of the sys-
tem %,. :
If elements x, ye G are incomparable, we write z | y.

2. Breadth of a lattice. Let L be a lattice. Suppose that b = bL is
the least positive integer such that any meet #; A ... A @, (n > b) is always
a meet of b of the x; (cf. [1], p. 99). Then bL is the breadth of the lattice
L; the lattice L is said to be of finite breadth if bL does exist.

A subset X = {#,, ..., 2,} = L will be called irreducible if inf(X \{z;})
> inf X for each ¢e¢ {1,..., m}. Then bL = n > 1 if and only if L contains
an irreducible subset with n elements and if no subset Y < L with
card Y > » is irreducible.

Assertions 2.1-2.3 are easy to verify (cf. also [1], p. 32, Example 6).

2.1. bL =1 if and only if L is a chain.
2.2. If bL exists and L, is a sublattice of L, then bL, exists and bL, < bL.

2.3. If L 18 a direct product of lattices L, and L, with cardL; > 1
(t =1,2) and ¢f bL, and bL, exists, then bL = bL,+bL,.

24. Let X be a disjoint subset of an l-group G, card X = n, and let
H be the convex l-subgroup of G generated by X. Assume that each interval
[0, 2] (xe X) i8 a chain. Then bH = n.

Proof. Let X = {«,,...,2,}. For any z; there exists a maximal
linearly ordered subgroup X; of G containing x; and the system {X,}
(¢ =1,...,n) is disjoint. Thus, from [2], Theorem 2, we infer that H
=X,®... ®X,; now, according to 2.1 and 2.3, we have bH = n, since
the lattice H is isomorphic to a direct product of lattices X; (i =1, ...
ceey M),

Let G =<H) and x,,...,2,eG, 2, A ... A v, =2. Since G/H is
linearly ordered, the set {z,+ H, ..., z,-+ H} has the least element x, + H
and z, < x; for each z;¢ x;,+ H; because x,+ H is a sublattice of G, we
have vzex,+ H and £ = y; A ... A Yp, Where {Y;, ..., Y} = {252 T;e 23+
+ H}.

2.5. Let G =<{H), bH = n. Then bG = n.

Proof. If b@ does exist, then bG > n by 2.2. Let m = n,z;,¢ G (t =1,
ey M)y Ty A By A ... A T, =2 and assume that X = {z,,...,2,} is an
irreducible subset of G'. There is a subset ¥ < X such that Y« H+
and infY = infX. Since X is irreducible, we have X = Y. Write z;,—
—a = 2;. Then {2,,...,2,} 18 an irreducible subset of H, hence m < n.
This shows that bG = n.

2.6. If G i3 a small lexicographic sum of a system &y = {B,, ..., B,}
of non-zero linearly ordered groups, then bG = n.

Proof. Assume that G is a small lexicographic sum of a finite system
&y, = {By, ..., B,} of non-zero linearly ordered groups. Then there is
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a positive integer & < n such that (the notation is as in Section 1) G = 4,.
From 2.1, 2.3 and 2.5 we infer (by induction) that bA4,, = n for m = 1,
«.ey k. Thus bG = n.

Consider the following example (cf. [1], p. 216, Example 6):

Let N be the set of all integers and let G be the set of all triples
(z, y, 2) with 2z, y, ze N. We define the operation + in G by the rule

(15 Y1y 21) + (@ay Y2y 22) = (@1 +Xay Y3y 23),

where y; = y,+ Y, and z; = 2, +2, if 2, is even, y; = 2, + 9y, and 2; = y, +
+ 2, if 2, is odd.

Further, we put (z,y,2)>0 if either >0 or # =0 and y >0,
2> 0. Then @ is a lattice ordered group. Write Y = {(0, v, 0): ye N}
and Z = {(0,0,2): ze N}. The l-group G is a small lexicographic sum of
l-groups Y,Z and these are linearly ordered. Therefore, according to
2.6, we have b@ = 2.

Put @ =(1,0,0) and b = (1,1, —1). Then a % b and 2a = (2,0, 0)
= 2b, thus @ fulfils (b). Further, write ¢ = (1,2, —1). The elements
a, ¢ are incomparable and 2¢ = (2,1, 1) > 2a, hence G satisfies (a). Let
n be a positive integer, n —2 = k > 0. Let B be the direct sum of & copies
of N, H = G®B. Then, bH = n and H fulfils (a) and (b). Therefore, we
have

2.7. For any positive integer n > 2 there is a laltice ordered group G
fulfilling (a) and (b) such that bG = n.

2.8. Let G be an l-group. The following conditions are equivalent:

(i) bG = n;

(i) @ contains a disjoint subset with n elements and it does not contain
any disjoint subset with more than n elements.

Proof. Assume that (i) holds and let X = {,, ..., z,} be a disjoint
gset. Let H be the l-subgroup of G generated by X. Then Hn[0, z;]
= {0, z;}. According to 2.4, we have bH = m, whence bG > m, and this
implies m < n. Thus there exists a disjoint subset X of G with the greatest
cardinality my, < n. From [2], Theorem 1, it follows that G is a small
lexicographic sum of m, non-zero linearly ordered groups and hence,
by 2.6, bG = m,. Thus » = m,, and so (ii) is satisfied. Conversely, let
(ii) hold. By [2] and 2.6, we obtain bG = n.

3. Condition (F). Let us consider the following condition on G # {0}:

(F) Any bounded disjoint subset of G is finite.

3.1 (cf. [3], Theorem 6.1). G fulfils (F) if and only if it is a small
lexicographic sum of linearly ordered groups.

From the proof of this theorem that may be found in [3] it follows
that if G satisfies (F'), then it is a small lexicographic sum of the system
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&, congisting of all maximal non-zero linearly ordered subgroups of G.
According to 2.8, any Il-group '@ of finite breadth satisfies (F). If G satisfies
(F), then it need not be of finite breadth.

Assume that G satisfies (F'). Let ¥, be as aboveand let #,(n = 2,3,...)
be as in Section 1.

3.2. Assume that each l-group A; (ie I,) is an l-ideal of G. Then, for
each n > 1 and each ie I,, the l-group A} is an l-ideal of G.

Proof. Assume that the assertion is valid for » —1, where » > 1,
and let ie I,. There i8 ¢;¢ I,,_, such that A7~ ~1 < A?}. Thus, for any z¢G@,
we have A"“ = w-{-A"‘ —rc o+ A} —w. Moreover, from the construc-
tion of &, dewsed in [3], it follows that there is 45¢ I,, such that x4 A7 —
—x = A} and any two distinct elements of &, are disjoint. Since A:.'l"l
c AT n A:‘, we obtain 43 = A7

3.3. Assume that there is A} o€ &1 such that A1 i8 not an l-ideal of G and
the number of l-groups that are comugate to Al 18 fzmte Then G fulfils (a).

Proof. According to the assumption, there is ze@ such that —x+
+A; +o # A} . Consider the mapping ¢: g —x+g+2 (g¢@G). Each
of the l-groups

(1) @(A3); ¢*(Ai)s -y @"(45), -
is conjugate to A}o, hence the sequence (1) is finite and since ¢ is an
automorphism on @, there is the least positive integer » > 1 such that
¢"(4;) = Aj. Then A, ¢(4}),...,¢" '(4;) are distinct I-groups.
Choose 0 < ze A;, and write

Yy =a+2—9(@)+¢*(?)—¢’(R)+ ... +(=1)" "7 (2), Y= —x+y.

Since ¢* (k = 1,2,...) is an automorphism on the Il-group @, each
l-group «p"(A,}o) is a maximal linearly ordered subgroup of G, hence belongs
to &,. Therefore, the system

{Aio’ p(4; )’ " (4] )}

is disjoint and so, according to Theorem 2 of [2], the convex I-subgroup
H of G generated by the subgroups belonging to &, is the l-direct sum of
igroups Al .- 9" '(4i). We have ye A;‘,@‘P(Ato)@ . D" (43)
and ¢*()>0 (k =0,...,n—1); thus the element y, is mcompa,rable
with 0 and, therefore, y | . Further, we have

?(¥1) = ¢(2) —9%(2) + %) — ... +(—1)"""9"(2),
whence
2y =2z+9(y)+9 =20+ (—1)"""¢"(2) +2.

Now, we distinguish two cases:

2 — Colloquium Mathematicum XXVII.1
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(i) Suppose that (—1)""'¢"(2) +2z # 0. Since ¢"(4;}) = 4;, we have
(—1)""'¢"(2)+2< A} and because 4} is linearly ordered we infer that
the clements 2« and 2y are comparable and distinct; therefore, (a) is
valid.

(ii) Assume that (—1)""'¢"(2)+2 = 0. Write y, = 2+9,,y’ = v+ ¥,.
Then we get ¥’ | x, and

2y =20+9(¥s)+Y: = 20 +9(2) +o(¥) +2+9,
=22+9(2)+((—1)"'¢"(2) +2) +2 = 22+ ¢(2)+2 > 22,

whence (a) holds.
As a corollary to 3.3, 2.8, and 3.1 we obtain

3.4. Let G be an l-group of finite breadth and assume that there exists
Aje &, such that A} is not normal in G. Then @ fulfils (a).

3.5. Assume that G satisfies (F) and that each A;(ie I,) i8 normal.
For 0<we@, let I(x) ={iel,: 0 <a<<x for some ae A}}. Then, for
x,Yye G, we have x A y = 0 if and only if I(x) NI(y) =

Proof. Let # A y = 0. Assume that ieI(x) NnI(y). There exist
@y, a,e A} with 0 < a;, <2,0 < a,<y; because A; is linearly ordered,
we have 0<a, A a,ed; and a, A a;, <2 Ay =0, a contradiction.
Conversely, let I,(z)n I,(y) =9. If 2 Ay =2> 0, then (since the
system &, is maximal disjoint) there is 7¢I, and 0 < ae A} with a < 2.
From this we obtain i€ I,(2) N I,(y), a contradiction.

Let ¢ have the same meaning as in 3.3.

3.6. Assume that Q satisfies (F) and that each Ai(ie I,) 18 normal.
Let a,beGy, a A b = 0. Then a A ¢(b) = 0.

Proof. Suppose to the contrary that @ A ¢(b) = ¢ > 0. Then I(c)
# @; let ieI(c). Thus ieI(a) and ie I(p(b)). Therefore, A} non é8¢(b),
whence ¢~1(4}) non 8b. But ¢~!(4}) = A} and so A} non b, and this
implies t€I(b). We get 1€ I(a) N I(b); thus, according to 3.5, a A b # 0,
a contradiction.

3.7. Assume that G satisfies (F) and each A}e &, is normal. Then @
fulfils neither (a) nor (b).

Proof. Suppose that there are elements z, y¢ G with z |y, 2z < 2y.
There is a positive integer n such that z, y, 2z, 2y € A4, ; let n be the least
positive integer with this property. Since A, is discrete direct sum of
l-groups A7 (iel,), there must exist ¢,e I, such that x(47)|y(4Z),
20(47) = 2y(A”) Write 2(47) = o4, y(A43) = y,. It cannot occur that

5 < AZ,-' ~! for some ieI,_, because of the minimality of n; moreover,
n > 1 since the I-groups A; are linearly ordered. Thus A3 = (B), 4} # B
and B is a direct sum of two or more l-groups belonging to .9’,,_1. From
x, | y; we obtain #,+ B = y,+ B, whence 2 = —x,+y,¢ B, 2| 0. There-
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fore, 2 =2t —2", 2t >0,2" >0 and 2" A 2~ =0. Hence, y, = o, +2
and 2y, = 2x,+o(z7) —@(z7)+2t —2".

According to 3.6, we have g(2t) A2~ =0, ¢(27) A 2T =0 and,
clearly, ¢(2%) A ¢(27) = 0; therefore, (p(2*)+2%) A (p(z7)+27) = 0.
From this it follows that ¢(zt)—¢(27)+2t—2" |0, whence 2y, |2z,
a contradiction.

3.8. THEOREM. Assume that G satisfies (F) and that each Aje &, has
only a finite number of conjugates. Then condition (a) ts equivalent with
any one of the following conditions: (i) there exisis A}e &, that is not normal
in Q; (ii) there exists 0 < ae G such that [0, a] is a chain and the element
a 18 disjoint with some of its conjugates. Moreover, if G satisfies (b), then
ot fulfils (a) as well.

Proof. The equivalence of conditions (a) and (i) follows from 3.3
and 3.7. Assume that (i) is valid and choose 0 < ae¢ A;. There is ¢ G such
that —o+Aj+2 = 4} « %1, A} # A}, hence 4; N A} = {0} and, there-
fore, a A (—x+a-+a) = 0. Since A; is linearly ordered, [0, a] is a chain.
Conversely, let (ii) be satisfied. Because [0, a] is a chain, there is Aje &,
with ae A}. If a A (—z+a-+2x) = 0 for some z¢ @G, then —x+-a+x4¢ 4},
hence —xz+ A} +a # A;. If (b) is valid, then, according to 3.7, (i) holds,
and so (a) is satisfied.

As a corollary we obtain

3.8.1. Let G be an l-group of finite breadth. Then conditions (a), (i) and
(ii) from 3.8 are equivalent. If G satisfies (b), then it fulfils (a) as well.

3.9. There exist l-groups of fimite breadth satisfying (a) and not ful-
Sfilling (b).

Example. Let I be the set of all integers with the natural order
and let X; = N =Iforeachiel, X =Y = I ;X;. Let G be the set of all
triples (n, «, y) with ne N, e X, ye Y. For any ne N and xe X let 2" X
such that z" (¢) = x (¢+n). Define the operation + in G by the rule

(Myy Zyy Y1) +(Nay T2y Y3) = (Mg + gy Zsy Ys),

where z3 = a2+ 2,,y; = y12+vy, for n, even, and z, = y2+2,, ¥ =
22+ y, for n, odd. (G5 +) is a group. Put (n,, z,, ¥,) = 0 if either n, > 0
or n, =0 and «, > 0, ¥y, > 0. Then @ is an l-group, bG@ = 2, and @ fulfils
(a) but not (b).
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