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A function in a set A is any (in particular, empty) partial transform-
ation of A. If f and g are functions in A4, then gof denotes a function
in A such that, for every aed, gof(a) is defined if and only if f(a) and
g(f(a)) are defined and gof(a) = g(f(a)). A function semigroup is any
non-empty set of functions in a fixed set A closed under superposition
o of functions. Clearly, o is an associative operation.

We consider functions in A as binary relations

f = {(a,f(@): aeprif} < 4 x4,

where pr, f is the domain of f. Thus, set-theoretic operations on functions
make sense; e.g., fug denotes the set-theoretical union of f and g.
Obviously, f U g need not be a function. If f U ¢ is a function, then f and
g are called compatible. A function semigroup is called compatible if every
two functions belonging to the semigroup are compatible. Compatible
function semigroups have been studied in our previous paper [11].

Every function semigroup is (partially) ordered by the inclusion
relation: f < g means that g is an extension of f. This order relation has
been studied in another paper of the author [4] (cf. also [6] and [8]).
In particular, linearly inclusion-ordered function semigroups have been
considered in [9]. Clearly, a linearly inclusion-ordered function semigroup
is compatible. In this paper we consider other types of inclusion-orderings
on compatible semigroups.

In Theorems 1 and 2, necessary and sufficient conditions are given
for an ordered semigroup to be order-isomorphic with an inclusion-ordered
compatible or strongly compatible function semigroup. (A function semi-
group F is called strongly compatible if all functions from F are one-to-one
and the set-theoretic union of any two functions from F is one-to-one.)

Suppose F is a function semigroup closed under the binary set-theo-
retic union uU. Then F (considered as an algebra with respect to two



12 B. M. SCHEIN

binary operations: superposition and union of functions) is called a func-
tion L-semigroup. Function N-semigroups are defined analogously. Clearly,
function U-semigroups are compatible as semigroups. Function N -semi-
groups need not be compatible (e.g., the symmetric function semigroup
Z 4 of all functions in A is closed under n). Function uU-semigroups are
semilattice-ordered. In Theorems 3 and 4 we characterize those semilat-
tice-ordered semigroups which are order-isomorphic with function U-semi-
groups and one-to-one function uU-semigroups. An analogous problem
for function n-semigroups has been solved by Garvackii [1]. At the
end of this paper we give some results on the structure of semilattice-
-ordered semigroups order-isomorphic with function uU-semigroups.

THEOREM 1. An ordered semigroup (S; -, <) (here (8; ) 18 a semigroup
and (S; <) an ordered set) is order-isomorphic with an inclusion-ordered
compatible function semigroup if and only if the order < i8 stable, i.e., for
every 8,1, u, vel,

1) s<itand u<v imply su < tv,

and, for every s,t, uesS, the following two conditions are satisfied:
(2) if 8 < tu, then s < su,

(3) st<s.

Proof. Necessity. Suppose (F; o, <) is an inclusion-ordered funec-
tion semigroup. The necessity of (1) is well known [4]. Now suppose
f < hog for some f, g, heF. If f(a) is defined, then k(g(a)) is defined.
Therefore, g(a) is defined. Since F is compatible, f(a) = g(a), whenoe
f(a) = k(g(a)) = h(f(a)) and f < hof. Therefore, (2) is necessary. Notice
that in a function semigroup the produect of two factors f and ¢ is written
from right to left: gof; in an abstract semigroup the same product is
written from left to right: fg.

Clearly, pr,(gof) < pr,f (cf., for example, [4]). Since gof and f are
compatible, gof < f and (3) is necessary.

Sufficiency. Suppose (1)-(3) hold. By (3), zy2<xy; by (2); vy < @y
implies ay < xy?; therefore, zy* = xy for all z,ye8. By this identity,
and by (3) and (1), vy < r implies xyz = x(y2)? = TYyz < T2Y2 < 22Y,;
analogously, zzy < zyz. Therefore, xyz = x2y, i.e., the semigroup (S; -)
satisfies identities (1) and (2) of Theorem 1 from [11]. The following part
of the proof is an almost exact replica of the proof of the sufficiency of
Theorem 1 from [11], the only difference being that P(g)(a,) is defined
only if #<g. As in [11], we obtain P(gh) = P(h)oP(g) for all g, heS8.

If P(g9) = P(h), then P(g)(a,) is defined; therefore, P(k)(a,) is defined,
i.e., g < h. Conversely, if ¢ <h and P(g)(a,) is defined, i.e., z < g, then
< h and P(h)(a,;) is defined; if P(g)(b,) is defined, then zg = z and,
by (1) and (3), * = 2g < zh <z and zh =z, i.e., P(h)(b,) is defined.
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Therefore, pr,P(g) < pr,P(k) and, since the functions P(g) and P(A)
are compatible, P(g) < P(h). Thus,

P(g) = P(h)e> g < h.

In particular, if P(g) = P(k), then P(g) = P(h) < P(g9) and ¢ < h < g,
i.e., g = h. Therefore, P is an order-isomorphism of (8; -, <) onto an inclu-
sion-ordered compatible function semigroup.

THEOREM 2. An ordered semigroup (8; -, <) 18 order-isomorphic with
an inclusion-ordered strongly compatible function semigroup if and only
if conditions (1)-(3) of Theorem 1 hold and the semigroup (8; -) i8 commutative.

Proof. Necessity. By Theorem 1, conditions (1)-(3) are necessary,
and by Theorem 2 of [11], commutativity iS necessary.

Sufficiency. As in the proof of the sufficiency of Theorem 2 from
[11], suppose a, = b, if and only if 22 = x and define P(g) for all ge8
as in [11]. The only difference is that P(g)(a,) is defined only if x < g.
If a, = b,, then 22 = z and = < ¢g implies, by (1) and (3), z = ¥* < 29 < =,
i.e., g = x. Conversely, zg = « implies, by (3), # = gz < g. Therefore,
P(g)(a,) is defined if and only if P(g)(b,) is. The next part of the proof
is an obvious modification of the proof of the sufficiency of Theorem 2
from [11]. In particular, P(gh) = P(h)oP(g) for all g, heS and the func-
tions P(g) are strongly compatible for all ge G. An obvious modification
of the proof of Theorem 1 gives us the equivalence P(g) =< P(h)«—g < h
showing that P is an order-isomorphism of (S;:, <) onto an inclusion-
-ordered strongly compatible function semigroup.

THEOREM 3. A semilattice-ordered semigroup (8;-, V) i8 isomorphic
with a function U-semigroup (i.e., there exists a onme-to-one mapping P of
8 onto a set of functions such that P(t)oP(s) = P(st) and P(s) U P(t) =P(svi)
for all 8,1e8) if and only if the multiplication - is distributive relatively
to the semilattice join v, i.e.

(4) x(yve)=xyvaoz and (yvz2)x =yx v,
and, if * <y means that x vy =y, condition (3) is satisfied and
(5) <tvuw implies s <<tvsv for all s,t, u,veS.

Proof. Necessity. Suppose (F; o0, u) is a function u-semigroup.
Then identities (4) hold obviously and (3) follows from Theorem 1. Suppose
s <ty (vou) for some 8,t, u,veF. If s(a) is defined, then either t(a)
or vou(a) (or both) are defined. If vou(a) is defined, then u(a) is defined
and, since 8 and w are compatible, s(a) = u(a), i.e., vos(a) is defined.
Thus if s(a) is defined, then either #(a) or vos(a) are defined, i.e.,
pry8 < pry(t v vos). Since the functions s and tvwvos are compatible,
gsctv(vos), i.e.,, (5) holds.
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Sufficiency. Suppose (8;-, v) is a semilattice-ordered semigroup
satisfying conditions (3), (5) and (4).

An order-ideal (o-ideal for short) of (8;-:, v) is a non-empty subset
W of § satisfying the following two conditions: (i) if 8 <t and teW, then
seW; (ii) if 8,¢eW, then s v teW.

Suppose g and h are different elements of S. Then at least one of
two inequalities, ¢ < h and h < g, does not hold. Without loss of generality
we can suppose that g < h does not hold. Then the set {s: s < h} is an
o-ideal containing k but not g. By the Zorn lemma, there exists a maximal
o-ideal W such that heW and geW’, where W' = S\ W. Suppose that
se8. Then, by (3), ws < w for every we W and wse W, i.e., Ws< W,

If gse W and use W', then the set {v: v < w v us for some we W}
is an o-ideal of § which properly contains W. Therefore, ¢ < w v us for
some we W. By (5), ¢ < w v gs and, since w, gse W, we infer that ge W —
a contradiction. Therefore, use W, i.e., Ss = W.

If gse W', ve W’ and vse W, then the set {u: u < wv v for some
we W} is an o-ideal which properly contains W, and therefore, g < w v v
for some we W. Using (1) (which is an obvious corollary to (4)), (4) and
(3), we obtain

gS < (WVvv)s =wsVvos<wWV V8

and, since w, vse W, we infer that gse W — a contradiction. Therefore,
vse W' and W's < W'.

An o-ideal V is called a face if, for every seS, the subset V's is included
in V' orin V (i.e., V is a face if V is an o-ideal and (V x V)u(V'x V')
is a right regular equivalence relation on (S; -)). In particular, the o-ideal
W considered above is a face containing » but not g. Thus we have
proved that if ge V> heV for all faces V, then g = &.

Now let F be the set of all faces. For every face feF, let a, and
b; be two symbols; if f, ge F are two different faces, then all four symbols
as, by, a, and b, are different. Let A be the set of all these symbols. For
every se8, let P(s) be a function in A defined as follows:

apepr,P(s) > sex’; byepr,P(s)e>ax’'s < a';
if ayepr,P(s), then P(s)(a;) = b,; if byepr,P(s), then P(8)(by) = by.

Clearly, P(s) is a function and all the functions P(s) for seS8 are
compatible. We are going to prove that P is an isomorphism of (8;-, v)
onto a function semigroup.

Suppose 8, teS and azepr,(P(s) U P(?)), i.e., ayepr,P(s) or a,epr,P(?),
i.e., sex’ or tex’. It follows that 8 v tex’. Conversely, if s viex’, then
sex’ or tex’ (since s,tex imply sviex). Now sviex’ means that
arepr,P(svt). If byepr,(P(s) UP(?), ie., byepr,P(s) or b,pr,P(t), or,
which is the same, x's < &' or ®'t < ®', then the inequalities s < sv i
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and t < svt imply the impossibility of ®'(s vi)< @, ie.,, &' (sVvi) < '
On the other hand, if ®'(s v t) < &', then ®&'s < &' or &'t = &’ (otherwise,
x's < x and &'t < &, whence &'(s vt) < x, since & is an o-ideal). Thus
byepr,P(s vt). We have proved that

pr, (P(s) v P(?)) = pr,P(s v ?)
and, since the functions P(s) u P(f) and P(s v?) are compatible,
P(s) uP(t) =P(svi).

Let a,epr,P(st), i.e., stex’. Since, by (3), st < s, we infer that sex’
and a,epr,P(s). Since sex’ and stex’, the inclusion ®'t = x is impossible;
therefore, ®'t < &' and byepr,P(t). It follows that a,epr,(P(t)oP(s)).
Conversely, a,epr,(P(t)oP(s)) means that a,epr,P(s) and b,epr,P(t),
i.e., that sex’ and ®'t < ®’. It follows that stex’ and a,epr,P(st). Now
byepr,P(st) means that x’'st < x®'. If uex’, then, by (3), ust < us and
usex’, ie., ®'s < ®'. Now a'st = ®'t and, since x'st < &', we obtain
x't < a'. Thus byepr, P(s) and b, epr, P(¢). It follows that b, epr, (P(¢)o P(s)).
Conversely, suppose bgepr,(P(t)oP(s)) or, equivalently, b,epr,P(s) and
byepr,P(t). Then x's < &' and @'t < x’, whence, x'st < &'t < &’ and
b <pr,P(st). Thus

Pr1(P(t)O P(s)) = pr, P(st)

and, since the functions P(f)oP(s) and P(st) are obviously compatible,
P(t)oP(s) = P(st) for all s, teS.
Now suppose P(s) =P(f). If xeF, then
Sex’ <>ayepr,P(s)—a,epr,P(t) > tex’,
whence sex«>tex for all xeF. As we have proved above, s =t follows.
The proof of Theorem 3 is complete.

THEOREM 4. A semilattice-ordered semigroup (S;-, V) i8 isomorphic
with a U-semigroup of one-to-one functions if and only if conditions (3),
(4) and (5) are satisfied and the semigroup (S;-) 18 commutative.

Proof. The necessity follows from Theorem 3 and from Theorem 2
of paper [11]. ‘

Sufficiency. Introduce a, and b, for every xeF as in the proof
of the sufficiency of Theorem 3 but with a, = b, if and only if ®'®' < ’.
Let P(s) for every seS8 be given as in the proof of Theorem 3. Suppose

a4y = b,. It is a matter of a simple evaluation to check (using commutati-
vity of (8;-)) that

aepr,P(s) b epr,P(s) for every seS.
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Clearly, P(s), s<8, form a compatible set of functions. To prove
that P(s) is one-to-one we need to comsider the case where P(s)(a,) =
= P(8)(by) = by, i.e., where sex’ and x's < x’. Since sz’ = x's, we
obtain s’ < ®'. If tex’ and x't <*x, then stex and sx’ cannot be a subset
of ®' — a contradiction. Therefore, ®'t < &’ and ®’'®’' < &', i.e., a, = b,.

As in the proof of Theorem 3, one can verify that P(s) u P(t) = P(s v ?)
and P(t)oP(s) = P(st), P(s) = P(t)«>s =1 for all s, teS. It follows that
P is an isomorphism of (8;-, v) onto a u-semigroup of one-to-one func-
tions. The proof of Theorem 4 is complete.

While the problem of determining the structure of ordered semi-
groups and u-semigroups of functions remains open, the solution to
an analogous problem in case of one-to-one functions follows.

Suppose (8; -, <) is an ordered semigroup satisfying the conditions
of Theorem 2, I = {¢: 42 = 4} is the set of all idempotents of (8; ‘) and,
for every tel, S; = {8: 82 = i}. By Corollary 1 to Theorem 2 from [11],
I forms a semilattice (i.e., an idempotent and commutative semigroup)
under induced multiplication, and (8; -) is an inflation of the semilattice
I, ie., if 8;¢8; and s;¢8;, then s;s; = ij. Let 3 denote the canonical
order relation of the semilattice I. Since I is isomorphic with a semigroup
of one-to-one functions in a way such that < corresponds to the set-
-theoretic inclusion, < coincides with 3 on I [2] (this fact follows readily
from the conditions of Theorem 2). By (3), 82 < s, i.e., ¢ is the smallest
element of 8;. If iel and 8 < ¢, then s < ¢ and, by (2), s < si. By (3),
81 < 8, i.e.,, 8 = st. Since 8¢ is idempotent, sel, i.e., 8 <iel imply sel.

Thus we have proved the sufficiency in the following

THEOREM 5. Let (I; *) be a semilattice with the canonical order -3,
i.e.,t 3jixj = i;let A be a set (possibly empty) and f: A—1 a mapping
of A into I; let the sets I and A be disjoint. On the set 8 =1 u A define
a multiplication and an order relation < in the following way: on I, the
multiplication coincides with » and the order < coincides with —3;if 8,te A,
then st = f(8)*f(1), 18 = 8t = i *f(8); ¢ < 81382 for every iel; on A,
the order < 18 arbitrary. Then (8; -, <) 8 an ordered semigroup satisfying
the conditions of Theorem 2 and every ordered semigroup satlisfying the
conditions of Theorem 2 can be constructed in the above-mentioned way.

Proof. The conditions of Theorem 2 can be verified by a straight-
forward computation. The converse part of the theorem has been proved
above. Theorem 5 is proved.

THEOREM 6. Let (I; A, V) be a distributive lattice and, for every icl,
let (8;;-, v) be an algebra such that ie8;, st =1 for all s,teS8;, (8;; V)
is a semilattice with the smallest element i, and if i = j, then 8; 0 §; = O.
For any i,jel such that 1 <j in (I; A, V), let f; be an isomorphism of
(83 -, v) into (8;;-, v), and the isomorphisms form a direct system, i.e.,
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fii 18 the identical automorphism and fpofy = fu. for all v, j,kel. On the
set 8 = 8; define two binary operations: if s;e8; and 8;¢8;, then let
iel

88 =tAj and  8;v8 = fr15(8) Vv fi4vi(8),

where v in the right-hand side denotes the semilattice operation of (83, V)
and i v j is the meet of i and j in (I; A, V). Then (8; -, v) 18 a semilattice-
-ordered semigroup satisfying the conditions of Theorem 4 and every semi-
lattice-ordered semigroup satlisfying the conditions of Theorem 4 can be
constructed in the above-mentioned way.

Proof. The conditions of Theorem 4 can be verified by a routine
computation. Conversely, let (8; -, v) satisfy the conditions of Theorem 4.
By Corollary 1 to Theorem 2 of [11], the set of all idempotents I is a semi-
lattice under the induced multiplication. Denoting by A the induced
multiplication on I, we see that (I; A, v) is a distributive lattice (here
v denotes the operation induced on I by the semilattice operation on S).
Let S; = {8: s = ¢}. Then the algebras (S;; -, v) satisfy the conditions
of Theorem 6. If ¢ < j, then f;(s;) = s; v j for all 5;¢8;, and for all ¢, jeI.
Clearly, f; form a direct system of homomorphisms. To show that f; is
an isomorphism, suppose f;(8;) = f;(#) for some s;,%;eS;. Then 8; v j
=t vj in (8;-, v). Therefore,

<t vj=tvjj,
whence, by (5),
Sk v sj=1tvi<i,

since ij <4<t Analogously, ¢;<s;, i.e, 8; =1;. If 8;¢8; and s;¢8§,, then

SiV SJ- = siV 'f:VjV 8]- = (S‘V ’I;Vj) \Y2 (Sj\/ ) Vj) =f‘l',ivf(8i) ij’ivj(sj).

The proof of Theorem 6 is complete.

For the sake of completeness we give here related results proved
elsewhere.

THEOREM 7 (see [1]). A semilattice-ordered semigroup (S;-, A) 18
isomorphic with a function N -semigroup if and only if the multiplication - is
left distributive relatively to the semilattice meet A and

(6) (sAatru)zan(tAau)y = (sAu)za(tAu)y,

where x and y can be either elements of 8 or empty symbols.

THEOREM 8 (see [1]). A semilattice-ordered semigroup (S;-, A) 1is
isomorphic with a N -semigroup of one-to-onme functions if and only if the
multiplication - is distributive (at both sides) relatively to the semilattice
meet A and

(7) TUVA YDA UYATY = TVA UDA UY,

2 — Colloquium Mathematicum XXXI.1
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where the variables can be either elements of S8 or emptly symbols, provided
identity (7) makes sense (i.e., xv, uv, uy, xye ).

The proofs of these theorems are based on the method of determinative
pairs devised in [3] (see also [6]).

If a set ' of functions is closed under the composition o and both
set-theoretic intersection N and union v, then the algebra (#;0,n, u)
is called a function Nnu-semigroup. Clearly, it is a lattice-ordered semigroup.

THEOREM 9 (see [10]). A lattice-ordered semigroup (S; -, A, V) is
isomorphic with a function Nu-semigroup if and only if the multiplication - is
distributive relatively to both A and v, the lattice (S; A, V) 18 distributive
and the following identity holds:

(8) TAYZ = TZAY.

THEOREM 10 (see [10]). A lattice-ordered semigroup (8; -, A, V) 18
isomorphic with a Nu-semigroup of one-to-one functions if and only if
it satisfies the conditions of Theorem 9 and the semigroup (S;-) i com-
mutative.

THEOREM 11. Let (I; A, v) be a distributive lattice and, for every
tel, let (8;;+y Ay, V) be a distributive lattice with' the smallest element 1
endowed with a multiplication - such that st =i for all s,teS;, the subsets
(8:)icr being disjoint. For every i,jel such that ¢ < j, let f; be an isomor-
phism of (8;; +, A, V) onto an ideal of (8;;, A, V) (i.e., onto an ideal of the
lattice (8;; A, V) which contains the element j), let the isomorphisms form a
direct system and, for every i,jel,

Joivi(8:) N Fiav5(8;) = Fingivi(Sing)-

On the set S = |J 8; define three binary operations: if s;eS; and
8;€8;, then fel
88; = UiAJy, 8V 8 = [iivi(8) V F1ivi(8)s
and
8$:7 8 = fingavi(Foivi (80 A frav5(8))-

Then (8;-, A, V) satisfies the conditions of Theorem 10 and, con-
versely, every algebra satisfying the conditions of Theorem 10 can be con-
structed in the above-mentioned way.

Proof. A routine verification shows that the algebra constructed
in Theorem 11 is a lattice-ordered semigroup satisfying the conditions
of Theorem 10. Conversely, if (8;-, A, v) satisfies the conditions of
Theorem 10, then (S;-, A, v) can be constructed as in Theorem 11,
provided (I; A, v) is the lattice of all idempotents of the semigroup
(8; -) with the induced lattice operations, S; = {8: 82 = ¢},and (8;;-, A, V)
is a subalgebra of (8;, A, v), and f;(s;) = 8;vj for all 4, jeI such that
t<j and for all s;e8;.
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Constructions alternative to those in Theorems 6 and 11 can be
devised if the algebras S; are considered as subalgebras of the colimit
of the direct system of these algebras.

Remark. Theorems 1-4 and 7-10 state that certain classes of al-
gebras or algebraic systems (those isomorphic with various function
semigroups) are axiomatizable by explicitely given systems of axioms.
The existence of elementary axiomatics for such classes follows from the
main. theorem on relation algebras (see [5], [7] and [6]). Axioms given
in Theorems 7-10 are identities, i.e., the corresponding classes of algebras
are varieties. The external form of the axioms given in Theorems 1-4
shows that the corresponding classes of algebras are quasi-varieties.
That they are not varieties one can see from the following

Example. Consider the four-element ordered set given by the

diagram
1
a

o

Endow the set with the obvious v-operation and with the multi-
plication 0x = a2 = ab = al = 0 for every # and b* = 1* = 1. Let the
multiplication be commutative. We obtain an algebra satisfying the con-
ditions of Theorem 4. Consider the equivalence relation ¢ on the set:
the classes modulo ¢ are {0}, {a} and {1, b}. It is easy to verify that ¢ is
a congruence. However, the quotient algebra modulo ¢ does not satisfy
the conditions of Theorems 1-4; therefore, the classes of algebraic systems
described in Theorems 1-4 cannot be varieties, since they are not closed
under homomorphisms.
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