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We deal throughout with varieties of a fixed finite similarity type .
In addition to the usual notations H(K), S(K), P(K) and Sp(K) we use
PF(K) (SE(K)) to denote the class of finite products (finite subdirect
products) of members of K. For all other notation consult [5]. We call
a set K of finite algebras finitely closed if HSP¥(K) = K. Andreas Blass
asked if the finitely closed sets could be characterized. Let K, denote
the finite members of a class K of algebras. We show that K is finitely
closed if and only if

K =U (¥,

<o
for some sequence of varieties V'. This leads us to a more general dis-
cussion of the relationship between a variety, its finite members, and
finitely closed classes. This discussion is facilitated by denoting HSP(K)
by K*. Thus for any class of algebras K we have two operators * and
sub-w which can easily be seen to satisfy
(i) (K"* = K* and (K,), = K.,

(i) K, < K, K< K*,

(iii) K, < K, implies K; < K, and (K,), < (K,),, and (somewhat
less easily),

(iv) (B*)y = ((E*).)"). and (K,)* = ((E.)")a)"

Subject to these conditions, a given class K can generate at most
7 classes under the operations * and sub-w. They are partially ordered
by inclusion as shown in the diagram on the next page.

This diagram is realized if K = {F,(w), %}, where V is a variety
of lattices which is not generated by its finite members, F,(n) a free
algebra on n free generators in V, and 7 the 2-element lattice. Examples
of varieties V have been found in [1] and [8].

If K is a variety, the diagram becomes K, < (K,)* < K, while if
K contains only finite algebras, the diagram becomes K < (K*), < K".
Some of our results can be interpreted in terms of further simplifications
of the diagram.
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We can now formulate a “dual” to the well-known problem (see [1],
[3], [4] and [8]) of when a variety is generated by its finite members
(in our notation when does (V,)* = V).

QUESTION 1. Give necessary and sufficient conditions on a set K
of finite algebras for (K*), to equal K. (P 965)

We give a sufficient but not necessary condition in Theorem 2.

We require the following variant of Birkhoff’s Theorem. It can be
proved by examining the proof in [5], Theorem 1, p. 167. In the follow-
ing we denote by K,, n < w, those members of a class K of algebras
which ‘are generated by » or fewer elements.

LEMMA 1. Let K be a class of algebras. Then Fg.(n) is in Sp(S(K,)).
Moreover, if S(K,) is finite, then Fx.(n)eSp(S(K,)).

A class K of algebras is locally finite if every finitely generated mem-
ber of K is finite. The class K is untformly locally finite if K has finite
algebras with more than one element and there is a function f: v -
such that every n generated algebra in K has not greater than f(n) ele-
ments. A locally finite variety is easily seen to be uniformly locally finite
by taking f(n) = |Fg(n)l.

We can now characterize finitely closed sets of algebras.

THEOREM 1. Let K be a set of finite algebras. The following are equiv-
alent:

(i) K = HSE(S(K));

(i) K = HSPF(K);

(iii) there exists a sequence of varieties {M,>, ., such that M, < M, .,
and K = |J(M,),.-

- Proof. It is obvious that (i)—(ii) and (iii)— (i) ; we show that (ii)—-(iii).
Suppose K =HSP¥(K) and let K, be {s/<K | |[A|<n} and M,= HSP(K,).
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It follows from Lemma 1 that
(M,), < HSE(S(K,)) = HSp(K,) < HSP"(K) < K,

since each S(K,) is finite. Thus U (M,), < K while, clearly, K = U (M,),
and M, s M,,.

We now return to Question 1. The following is similar to 14.3 of [6]:

THEOREM 2. Let K be a set of finite algebras containing at least one
algebra with more than one element. The following are equivalent:

(i) K s uniformly locally finite and finitely closed;

(ii), K* is locally finite and K = (K*),;

(iil) K = V, for some locally finite variety V.

Proof. (ii) implies (iii) and (iii) implies (i) are clear. We prove (i)
implies (ii). Note that, for each » < w, K, is finite, since K is uniformly
locally finite. Hence, by Lemma 1, Fg. (n)eSE (8 (K,)) and SE(S(K,)) < K,
since K is finitely closed. Thus every {finitely generated member
of K* is in H(K) = K and is finite, proving the theorem.

Thus we have obtained a sufficient condition in answer to Question 1.
If K is finitely closed and uniformly locally finite, then K = (K*),. Clearly,
it is necessary that K be finitely closed and, equally clearly (e.g., lattices),
it is not necessary that K be uniformly locally finite. '

The general question of when a variety is generated by its finite

members can be phrased as
(i) give conditions on V such that (V,,,)* =7V or

(ii) give conditions on V, such that (V,)* =V or

(iii) give conditions on V and V, such that (V,)* = V.

Clearly, if V is locally finite, then (V,)* = V. Thus if V is generated
by a finite algebra, then V is locally finite, and hence (V,)* = V. Moreover,
if V is any variety such that V, is uniformly locally finite and V is re-
sidually finite, then V is locally finite and (V,)* = V. (The uniform local
finiteness of V, is necessary, see [2].)

A variety V has the finite embedding property if every finite partial
algebra % which can be embedded in a member of V can be embedded
in a finite member of V. Evans proved ([4], Theorem 4; his result is
actually stronger than this) that any variety V with the finite embedding
property satisfies (V,)* = V. Clearly, any locally finite variety has the

finite embedding property but not conversely (e.g., lattices). We can
obtain a partial converse.

THEOREM 3. For any variety V, the following are equivalent:

(i) V is locally finite;

(ii) V, is uniformly locally finite and V has the finite embedding
property;
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(iii) there is some finitely closed and uniformly locally finite set K
such that V = K*.

Proof. Obviously, (i) — (ii) and, by Theorem 2, ()—>(111) To see
(ii) - (i) note that assuming (ii), by the Evans re%ult (Vo) =V and,
by Theorem 2, (V,)* is locally finite.

The question arises: Can Theorem 3 be strengthened by replacing
condition (ii) by

(ii") V, is uniformly locally finite?

We now show the answer is no.

Let V be the variety of lattice ordered groups. The only finite mem-
ber of V is the 1-element algebra, so V is not locally finite and V is not
generated by its finite members. Only our proviso that a uniformly locally
finite class must have non-trivial finite members prevents V, from being
uniformly locally finite. In the mentioned earlier non-trivial examples
of varieties which are not generated by their finite members, V, is not
uniformly locally finite. This raises the following question:

Does there exist a variety ¥V which is not locally finite, but with V
uniformly locally finite?

Walter Taylor has provided the following example which we include
here with his permission. The product VW of a pair of varieties is de-
fined in [7]. For our purposes it is enough to remark that if ¢ VW,
then there exist Ze¢V and ¥e¢ W such that 4 = B xC ([7], 1.15). Now
let V be any variety which has no non-trivial finite members, e.g., lattice
ordered groups, and W any locally finite variety, e.g., distributive lattices.
Then any finite member A of VW must have A = {1} xC for some
finite member ¥ of W. Clearly, (VQ W), is uniformly locally finite but
VW is not locally finite.

Careful examination of the definition of VQ W shows that if ¥V and
W are of finite type, then VQ W is polynomla.lly definitionally equivalent
to a variety of finite type.

In the remainder of the paper, we explore the properties of varie-
ties V such that V, is uniformly locally finite but V is not locally finite.

THEOREM 4. Let V be a variety such that V , i8 uniformly locally finite.
Exactly one of the following conditions holds:

(i) V 1is locally finite;
(ii) for some m, there exists an infinite set P of n-ary polynomials such
that, for each p, qeP,
Va) ".’P(wn "'7wn) = Q(wl’ ""wn)
but for every pair p,qeP there exist an infinile n-generated subdirectly
irreducible algebra o7 in V and elements ay, ..., a,ef/ such that

SEP(Qyy nns @) F q(Byy ...y ay).
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Proof. Clearly, (i) and (ii) are mutually exclusive. Suppose V is
not locally finite. Then, for some n, F; (n) is infinite. Since V, is uni-
formly locally finite, there is a finite algebra £ in V which is n-generated
and has the largest cardinality of any finite n-generated algebra in V.
Then, for some congruence 6 on F,(n), # ~ Fy(n)/0. Since & is finite,
some congruence class [b]6 of 0 is infinite. Let P be the set of n-ary poly-
nomials such that p(z,,...,2,)e[b]0, where x,,...,x, generate Fy(n).
Now let €<V, and suppose, for some p, qeP,

€F3yyy .oy Y DWWy ooy Yn) F QY15 ony Yn) -

Let ¢ be the congruence determined by the map from Fjx(n) into
the subalgebra of ¢ generated by {v,,...,¥,} which takes z; to y; for
1 < n. Since

P(@yy oeey @) =q(@y, ...,y 3,) (0)

but p(zy, ..., &,) # (21, ..., %,) (p), we have pA 6 < 0. Hence Fy(n)/pA 6
= %' has more elements than %. But since both ¢ and 6 have
only finitely many congruence classes, so does ¢A 6. Thus ¢’ is finite
contradicting the maximality of #. Now, for any p, qeP, if y is a maxi-
mal congruence of F,(n) which separates p(x,,...,2,) and ¢(2, ..., Z,),
then F,(n)/y is the required infinite subdirectly irreducible algebra.

The following corollary sharpens this result:

COROLLARY. Let V be a variety which is mot locally finite but such
that V, i8 uniformly locally finite. There is an integer n such that one of
the following two conditions holds:

(i) There are imfinitely many infinite m-generated subdirectly irre-
ducible algebras in V.
(ii) There is an infinite set Q of nm-ary polynomials and an infinite
subdirectly irreducible algebra o/ eK generated by ay, ..., a, such that
Vo Ep(@y, ..., @) = q(®1y ..., %) for every p, qeQ
and
AEP(ay, ..., 8,) # q(0yy ..., 8,)  for every p, qeQ.
Proof. Choose Fx(n) and the set P of n-ary polynomials according

to (ii) of Theorem 4. Suppose ,,..., &, enumerate the n-generated
infinite subdirectly irreducible algebras in K. Decompose P® (the 2-ele-

ment subsets of P) into | J P;, where {p, g} is in P; if &k p(dai,...,al)
i1

#q(ai, ..., a;) with af,..., a’ generating ;. By Ramsey’s theorem,
there exist an infinite set @ and an «/; such that

A Ep(ayy ..., ) #q(af,...,a;) for any p, geQ
which proves the Corollary.
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