COLLOQUIUM MATHEMATICUM

VOL. XXXVI 1976 FASC. 1

CARISTI’S FIXED POINT THEOREM
AND METRIC CONVEXITY

BY

W.A. KIRK (IOWA CITY, IOWA)

Let M be a metric space. We shall use here * the standard notation
of distance geometry with juxtaposition, ab denoting the distance of
points a, b in M and (zyz) denoting the relation “y is between x and z”
(cf. Blumenthal [3], Chapter II). Thus (xy2) indicates # # y # 2z and
zy +vyz = xz. The space M is said to be conver if given any two points
x, z in M with & # z there exists a point y in M such that (zyz). Menger’s
convexity theorem, stated below, is fundamental in the study of the
geometry of metric spaces. It asserts that each two points of a complete
and convex metric space M are actually joined by a metric segment
of M (that is, by an isometric image of a real line interval whose length
equals the distance between the points). It is our object in this somewhat
expository note to give a new and simple proof of this basic fact, a proof
based upon an easy application of a newly discovered fixed point theorem
due to James Caristi. We also show that the fixed point property asserted
in Caristi’s theorem is characteristic of complete metric spaces, and then
we append a simple proof of Caristi’s theorem.

THEOREM (Menger [14]). Any two poinis of a complete and convex
melric space M can be joined by a metric segment of M.

We derive this theorem from the following:

THEOREM 1 (Caristi [9]). Let M be a complete metric space, G: M —~M
an arbitrary function, and ¢: M—>R* lower semicontinuous (R* denotes
the non-negative real numbers). If, for each x in M,

26 (%) < ¢ (2) —¢(G(2),
then G has a fixed point in M.

* Research supported in part by the National Science Foundation, grant
MP875-03166. The results contained in this paper were presented to a meeting of
the American Mathematical Society in Kalamazoo, Michigan, on August 19, 1975.

Part of this work was carried out while the author was Visiting Professor at
the University of British Columbia.
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Before proceeding, some comments about Theorem 1 are in order.

The formulation of Theorem 1 along with Caristi’s transfinite in-
duction proof [9] evolved from his study of inward mappings (also see
[10]). Further applications of Theorem 1, specifically applications to
Browder’s theory of normal solvability ([7], [8]), are given in Kirk-
Caristi [13] and Kirk [12]. We also note that Theorem 1 is actually
equivalent to a theorem announced in 1972 by Ekeland [11] (Théoréme 1).
Ekeland’s result (which is not formulated as a fixed point theorem) is
an abstraction of a lemma due to Bishop and Phelps [2]. After suggesting
a possible connection between Theorem 1 and the Bishop-Phelps approach,
Felix Browder devised a proof [8] of Theorem 1 which avoids completely
the use of transfinite induction (and even avoids the axiom of choice).
The simple proof we append to this note, based upon an application of
Zorn’s lemma, is similar to Browder’s approach and is implicit in a recent
paper of Brendsted [5]. Finally, we remark that Wong [16] has consider-
ably simplified Caristi’s original transfinite induction approach.

Proof of Menger’s theorem. We prove this theorem by first establish-
ing two lemmas. Our method basically differs from Menger’s original
approach only in that we apply Caristi’s theorem to give a quick proof
of Lemma 1. This lemma subsumes the “deep” part of Menger’s argument,
a step established originally by transfinite induction. (We should remark
that a different proof of Menger’s theorem due to Aronszajn [1] can be
found in Blumenthal [3], p. 41-43, and in Blumenthal-Menger [4],
P. 244 - 246. Another proof is sketched in Menger-Milgram [15]. Our proo
should be compared with these approaches.)

Our first lemma does not require convexity of the space.

LEMMA 1. Let M be a complete metric space with a, be M, a # b, and
suppose 0 < A < ab. Let

B(a,b) = {xe M: (axd)},
8 = 8(a,b, ) = {we B(a, b): ax < A}U{a}.

Then there exists a point x,¢ M such that

(1) ®1e 8(a, b, 2),

(ii) ze B(a, b)A (ax;2) =>az > A.

Proof. Case 1. There exists T¢ § with aZ < A4 such that (axz) =z¢ S.
In this case take x; = £ and note that (ii) follows trivially.

Case 2. For each ze S with ax < 1 there exists y,¢ § such that (axy,).
In this case define G: S—8 by taking G(z) =y, if ax < 4 and G(z) ==
otherwise. Define ¢: §—R* by ¢(2) = A —ax. Then, clearly, ¢ is continuous
and, for ze S,

2G(2) = a@(z) —ax = A —ax — (1 —alG () = p(2) —p (G (2)).
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Since § is closed (hence complete), by Theorem 1 G(z) = Z for some
point e 8. This implies ax = 4 and * = «, satisfies (i) and (ii).

The remainder of our proof, included here for the sake of complete-
ness, is elementary and follows Menger [14]. We use the following transi-
vity of betweenness relation (see [3], p. 33):

For points p, q,r,se M,

(pqr) and (prs)<(pgs) and (grs).

LEMMA 2. Let M be complete and convex, a, be M, a + b, and suppose
0 < A < ab. Then there exists xe M such that (axb) and ax = A.

Proof. By Lemma 1 there exists z,¢ M such that:

(1) X, € S(a'7 b7 1)7

(ii) ze B(a, b)A(ax;2)=>az > A.

Let ' = ab—1 and again apply Lemma 1 to obtain y,e M such
that:

(1)" yare 8(by 25, A'),

(i)’ ze B(b, z;)A(by,2)=bz > 4.

Case 1. ; = y,.. Then, since ab = ax;+x,b < A+ 1" = ab, it follows
that ax; = A.

Case 2. ¢; # y,.. In this case use convexity of M to obtain we M
such that (x,wy,). By assumption the relations (ax,b), (x,y,b), and
(z,wy;.) hold. It follows immediately from transitivity of betweenness that
(awd), (az,w), (bwzx,;), and (by,w) also hold. Now (awb)A (ax,w)=aw > i
by (ii) and (bwz;)A (by, w)=bw > i’ by (ii)’. Therefore

ab = aw+4wb> A+ = ab.

This contradiction establishes Lemma 2 via Case 1.

Proof of Menger’s theorem completed. Let a,, a,¢ M, a, # a,. By
Lemma 2 there exists a,,¢ M such that aqa,, = a,,a, = }a,a, (ie.,
ay, is a “midpoint” of the pair (a,, a,)). Let d = a,a, and define the
mapping F by

FO =a, F(g)=mn F@)-a

Again by Lemma 2 there exist points a,,, a3, which are respective
midpoints of (a,, a,,), (ay5, @;). Define

a\ d
F (‘I) = Gy, F (3“1‘) = Q3
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and use transitivity of betweenness to conclude that F is an isometry on
da d d
{0, Y 3Z, d}.

By induction obtain points {a,n}, 1<p<2"—-1 (n =1,2,...),
in M such that the mapping F': Pajzn —> Opjen 18 an isometry. Since {pg,n}
is a dense subset of (0, d] with F an isometry defined on this set, and
since M is complete, it is possible to extend F in the obvious way to all
of [0,d]. The resulting set F([0,d]) is a metric segment in M
joining a, and a,. This completes the proof.

We now prove a theorem which together with Theorem 1 characterizes
completeness.

THEOREM 2. Let M be a metric space which is not complete. Then there
exist a fived-point free function G: M—M and a continuous mapping
¢: M—>R™* such that

26 (2) < p(2) —p(G(®), xeM.

Proof. Let {x,} « M be a Cauchy sequence which has no limit.

Define y: M—-R* by
p(2) =limax;,, z2eM.
1—00

Given xe¢ M, let » be the smallest positive integer such that
1
(%) 0 < > at, < p(@) ~ ().

(Note that y(=,) — 0 while p(x) > 0.) With n so:determined, define G () = «,,
and let ¢(x) = 2y(wx). Then, from (=),

26 (7) < p(2) —p(G ().

Remark 1. We should point out that if T: M—M is a contraction
mapping (i.e., if there exists k < 1 such that T2 Ty < kxy, ©, ye M), then T
satisfies the assumptions of Theorem 1 with ¢(z) = (1 —k) '2Tz. We
emphasize that the mapping G of Theorem 1 is not assumed to be con-
tinuous.

Remark 2. In connection with Theorem 2, we point out that there
exist non-complete metric spaces M which have the property that every
contraction mapping 7: M—+M has a fixed point.

Proof of Theorem 1 (cf. Brondsted [5]). For a, be M, define the relation
a<bewab< p(a)—p(d).

It is easy to verify that (4f, <) is a partially ordered set. Fix ze M
and use Zorn’s lemma to obtain a maximal (relative to set inclusion)
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totally ordered subset E of M containing Z. Assume E = {z,},.;, Where I
is totally ordered and

Ty <Tgra P (a,Bel).

Now {@(%,)}eer is & decreasing net in R*, so there exists # > 0 such
that ¢(x,) >r as af. Let ¢> 0. There exists an aye I such that

azay=>r < p(e) <r+e.
Therefore, if 8> a > a,, then
wawp < (p(wa) _(p(wﬁ) <¢

and this proves that {z,},.; is a Cauchy net in M. By completeness there
exists v e M such that x,— x as af. Since ¢ is lower semicontinuous, ¢ (x) < 7.
Also, for g > a,
wamﬂ < (p(wa) _(P(wp)
and, letting g1,
Lo < q)(wa) —r< (P(wa) —(}J(w)

yielding z, < #, ae I. Since E is maximal, ze¢ E. But also

2G (2) < ¢(2) — (G (@),
s0 it follows that
2, <x<G(z), acl,

and, by maximality, G(z)e . Therefore G(r) <« and it follows that
G(z) = .
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