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1. Introduction. Let S denote the class of functions of the form
f@=z+ ) a,z"
n=2

that are analytic and univalent in the unit disk 4 = {z: |z| < 1}. It is known

(see [3] and [5]) that a sufficient condition for z+ ) a,z" to be in S is that

n=2

a0

(1) Y nla,| < 1.

n=2

For functions of the form
f(z)=z— ‘Zza,,z", a,=0,
condition (1) is also necessary for univalence because
fln=1- Zﬁ‘:na,,r"‘l =0
for some r (< 1) if

Q
Y, na,>1.
n=2

Let T denote the subclass of S consisting of functions of the form

e o}
z— ) a,z", a,20.
n=2
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Denote by T*(«) and C () the families of functions in T that are, respective-
ly, starlike of order a« and convex of order a, 0 < a < 1. It was shown in [11]
that fe T*(a) if and only if

2 Y (n—a)/(1—a)a, < 1
n=2
and that feC(x) if and only if

f (n(n—aw)/(1-a)a, < 1.
n=2

Additional subfamilies of T have been investigated in [1], [6], [10], and
[13].

A function
f@)=z=Y a,z" a,>0,
n=2

is said to be in the family F({b,}) if there exists a sequence {b,} of positive
real numbers such that

Y bya,<1.

n=2
The family F({b,}) was introduced in [12], where it was observed that
F({b,}) is a convex family and is contained in T if and only if b, > n for
every n, which we will henceforth assume unless otherwise stated. From the
definition we see that a, < 1/b,. We now introduce a subfamily of functions
in F({b,}) with fixed second coefficient.

A function

f@) =z2—(pb)zi~ ¥ ayz" (O<p<1, a0
n=3

is said to be in the family F,({b,}) if there exists a sequence {b,} of positive
real numbers such that

[ o]

In this paper, we obtain the extreme points of F,({b,}) and use them to
establish distortion theorems. The order of starlikeness, radius of convexity,
and other extremal properties for functions in F,({b,}) are also determined.

There have been several papers involving subclasses of S with fixed
second coefficient. See, e.g., [2], [4], [7], and [9]. Most of these papers deal
with distortion theorems and give (frequently non-sharp) coefficient and
radius of convexity bounds. The family F,({b,}) incorporate numerous
subfamilies of T consisting of functions with a fixed second coefficient. The
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families
T*() =F,({(n—0)f(1-)}) and C,(a) =F,(In(n—a)/(1-a)})

were investigated in [14]. The subfamily D(x) of T consisting of functions for
which

i [P((1-)n+a)]a, <1

was studied in [13]. For D,(x) consisting of functions in D(a) for which
a, = p(2—a)/4, we note that

D,(@ = F,({(n*/(1 - n+a))}).

The results obtained here for the family F,({b,}) give rise to the
corresponding results for the classes T}*(a), C,(2), D,(x), and several other
subfamilies of T

2. Extreme points of F,({b,}). It is easy to see that F,({b,}) is closed
under convex linear combinations and, therefore, the closed convex hull of
F,({b,}) is simply F,({b,}). We now determine the extreme points of this
class.

THeOREM 1. The extreme points of F,({b,}) are given by

f20)=z—(p/b))z*> and  f,(2) = z—(p/by) z* —((1— p)/b,)2"
(n=3,4,..).

Proof. It suffices to show that feF,({b,}) if and only if it can be
expressed in the form

f2)= f: Anfu(2), where ,>0 and ) A, =1.
n=2

Suppose
f@ =Y Wfa@)=z—(p/b)2*—(1—p) } (A/b)2",
n=2 n=3

A, =0, Y A, =1. Since
n=2
p+(1=p) Y, by(A/by) =1-2,(1-p) <1,
n=3

it follows that feF,({b,}).
Conversely, if

S@ ==~ T a2’

9 — Colloquium Mathematicum LIV.1
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is in F,(ib,}), then
p+ Y b,a,<1.
n=3
Hence a,<(1—p)/b, (n=3,4,..). Set A,=b,a,/(1-p) (n=3,4,..) and
Ay =1— Y 4, Then

n=3
f(Z) = Z )’!lf;l(z)’
n=2
and the proof is complete.

Remarks. (i) Since T = F({n}), we have found the set of extreme points
for all univalent functions of the form

z—(p/)z*- Y a,z" (a,20,0<p<1).
n=3
(i) For b, =(n—a)f(1—a), 0 <a <1, Theorem 1 gives the extreme
points of the family T}*(x) found in [14].
(iii) For b, = n(n—a)/(1 —a), 0 < a < 1, we obtain the extreme points of
C,(a) found in [14].
(iv) For b, = n*/(1—a)n+a), we get the extreme points for D, (a).

3. Distortion properties. To prove our distortion theorems, we will make
use of

LEMMA 1. Set
Po = [—(4by+by—1)+./(4by+bs—1)>+16b,]/2,
—2(1=p)b,+./4(1-p)*b3+p*(1—p) b,
p(1—p) ’
fi(2) = 2—(P/b2)22—((1 —P)/b3)23-
If 0S<Sp<po<land ro<r<1, then
4(1—p)b3+p*b,

r0=

B e < r[

4(1-p)b3
p’ by +4(1—p)b3 244 —p)?bi+p’(l —Pbs . 1
2b3 b, 4b3 b3 '

Otherwise, we have

“) /3 < r+(p/bo) r* (1= p/by)r
Equality holds in (3) for

___1(p(1=p)r*—pb,
6 = cos (4(1—!’)1’2"

and in (4) for 6 = n.
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Proof. One can show that

0
52 =0

for

— - _ -1 p(l—p)rz—pb:,
0, =0, 6,=mn, 0O)=cos (4(1—p)b2r .

Since 0, is a valid root only when —1 < cosf; <1, and is indeed then a
maximum, we have a third root if and only if ro <r<land 0<p<po < 1.

THeorem 2. If feF,({b,}), (b,} an increasing sequence, then

(5) Ifréd = f070 O<r<1,0<p<)
and
(6) |f (ré®)| < max {m?XIfs reé), —fa(—n)}.

The result is sharp.

Proof. The extremal function must be one of the extreme points
of F,({b,}). But

1o (ré®) = r—=(p/b)r*~(1 —p)/b3)r* = f3()  (n>3),
which proves (5). To prove (6), note that

| fu(re®) < r+(p/bg)r?+((1 - p)/by)r".

Since {b,} is increasing, we have

faré) <r+(p/b)r* +({A—p)bo)r* = —fa(=1)  (n>4).

Thus, the only functions whose moduli can exceed —f,(—r) are cubic
polynomials. This completes the proof.

Remark. A comparison of —f,(—r) and the sharp bounds in Lemma 1
enables us, for any fixed p and r, to determine the precise upper bound for

|f @), feFp({ba}).

Using methods similar to Lemma 1, one can prove
LEMMA 2. Set

) —(6by+ b3 —3)+/(6by+ by —3)>+72b,
1= ’
6

L _ =30 =pba+/9(1-p)*b3+3p (1= p)bs
e 3p(1—p) ’

f3(2) = 2—(p/b2) 22 —((1 - p)/bs)2>.
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IfO<p<p,<land r,<r<l]1, then

2 2 2 2
o p°b3+3(1—p)b3 2p*b3+6(1—p)b3 ,
<
9(1-p)*b3+3p*(1-p)by ,|'?
+ 333 r .
b3 by
Otherwise, we have
. 2 3(1-
8) |f3(ré'®)| < 1+—pr—L-£)r2.
b, by

Equality in (7) holds when
3p(1—p)r®—pbs
6(1—p)b,r

cosf =

and in (8) when 0 = n.

. The next theorem, in conjunction with Lemma 2, enables us for fixed p
and r to obtain bounds on f’, fe F,({b,}). Its proof is similar to that of
Theorem 2, and will be omitted.

THeoreM 3. If feF,({b,)), {b,} increasing, then
If'ré’) = 300 0<r<1,0<p<})
and .
|f' (re’®)] < max {m:lx | f3(re), fa (=)}

Remarks. (i) For b, = (n—a)/(1 —a) and b, = n(n—a)/(1 —a), Theorems 2
and 3 yield the corresponding distortion results for T*(a) and C,(a),
respectively, obtained in [14].

(i) For b, = n*/((1—a)n+a) the sharp upper and lower bounds for |f|
and |f'|, feD,(a), follow from the above distortion theorems.

4. Order of starlikeness. We will show that the extremal function for the
order of starlikeness for some well-known subfamilies of F,({b,}) is a cubic
polynomial.

THEOREM 4. If

(n=1)[b;(b3—1)—p(b3—b,)]
9 b,=2 1+
® 2b,+p(bs —2b,)
for n> 3, then the order of starlikeness of F »({ba}) is
by (b3 —3)+ p(3b, —2b,)
by (b3 —1)—p(bs—b,)

The result is sharp, with the extremal function
f3(2) = z—(p/b;) 22 —((1 - p)/bs) 2°.

(10) B =B =
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Proof. First note, for B defined by (10), that

2-B 3-8
1.
(1 .3)+( )(1-—/3)
Hence, we see from (2) that f;(z) is starlike of order B: In view of Theorem 1,
we may express an arbitrary function f(z)e F,({b,}) as

f@) =2=(pfb)22=(1=p) T (/b "
n=3

where 4,>0 and ) 1, < 1. It therefore suffices to show that
n=3

(11) p(f §)+(1— )Zs ( z)<1.

But (11) is maximized when A, =1 if

(3 —B ( n—p
1-B 1-8)°
which is a consequence of (9). This completes the proof.
Remark. Since b, = n(n—a)/(1 —a) satisfies (9) for n > 3, the inclusion

Cp(@) = F,(in(n—a)/(1-a)}) = T*(B)
when
6(2(2—a)—p(1—a))
42-a0)d—-a)—p(1-)(5—a)’

B=

proved in [14], is a consequence of Theorem 4. Further, when p =1, we
have B =2/(3—a), the order of starlikeness found in [11]. For p=1,
Theorem 4 gives the following result proved in [12].

CoroLLARY 1. If b, = (b;—1)(n—1)+1 for every n, then the order of
starlikeness of F({b,}) is (b;—2)/(by—1).

Setting b, = n*/((1 —a)n+a), we have

CoroLLArY 2. If feD,(a), then

60.(4 - p) )

Je *(4(6+2a)—p(6—a) ‘

For p =1, Corollary 2 yields the result found in [13].
CoroLLARY 3. If

f@) = z=(p(1-2=a) 2>~ ¥ a,2"
n=3
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is in TY(a), then

g(z) = i @dt = z—(p(Al —a)/22—w)z? - Y (a,/n)z"
0 n=3
is in

T*( 122—a)—6p(1 —a)
42-a)d—-a)—p(5—-a))’

Proof. If b, = n(n—a)/(1—a), then ge F,(|b,}). Noting that (9) is satis-
fied, the result follows.
It is known that the Libera transform

22
T(f)=;£f(t)dt

preserves convexity, starlikeness, and close-to-convexity [8]. It was shown in
[12] that T(f) takes fe T*(a) to functions starlike of order (2+a)/(4 —a).
More generally, we have

CoroLLARY 4. If fe T)(a), then

22
g9(2) =;£f(t)dt

is in T*(B) for
_ 32—a)(3+a)—p(1—a)(6+a)
C3R-a)(5—a)—p(1-a)(6—0a)’

B

S. Radii of convexity and starlikeness. We next obtain the radius of
convexity for functions in F,({b,}).
TueoReM 5. If feF,({b,}), then f is convex in the disk |z| <ry = ro(p),
where ro(p) is the largest value of r for which
4p  mi(l—pr!

< =3,4,..).
A i—— 1 (n=3,4,..)

The result is sharp, with the extremal function being of the form

fu2) = z—(p/by) 22— ((1 — p)/b,)z"  for some n.

Proof. In view of Theorem 1, we may write feF,({b,}) as

£@) = 2= (pb) 2 —(1~p) 3 (/b "
n=3

where 4, > 0 and ) 4, < 1. It suffices to show that |zf"/f'| < 1 for |z| < r,.
n=3
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But

. Qolb)r+(1=p) ¥ (ufbyn(n=1)r"*
|Zf n=3

|f

VAN

1-(2p/by)r—(1-p) Zs (An/by) nr"~!
Thus |zf"/f'| < 1 if

N

(12) <1

: r+(1-p) Z
2

For each fixed r, choose the integer n, = ny(r) for which (n?/b)r" ! is
maximal. Then

ng:a (ln nZ/b") rn- 1 < ("5/17..0) rno‘ l'

We now find the value ro =ry(p) and the corresponding n,(r,) so that

1

4 (l —p)ngred
b2 bn

=1.
0
This gives the radius of convexity for F,(ib,}).

As was mentioned earlier, fe F,(1b,}) is univalent and starlike if b, > n.
In our next theorem, we relax this condition on {b,} and determine the
radius of starlikeness.

THeOREM 6. If feF,({b,}), then f is univalent and starlike in the disk
|z| <ry =ry(p), where ry(p) is the largest value of r for which

» (1
(13) 2, P =34,
b, b,

The result is sharp, with extremal functions of the form

fn (2) = z2—=(p/b3)z* —((1 - p)/b,) 2"

Proof. For

f(@) =z—(p/b))z*—(1-p) ;(l../b..)Z", ; In < 1,

it suffices to show that |(zf'/f)—1| <1 for |z| <r, =r,;(p). But

i

|(P/bz)r+(1 -p) Zs (An/by) (n=1)r"~!

<1

1—(P/bz)r—(1—P) 2 (A/br !
n=3
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if
® 2
(14) 2 it=p Y M-,
b2 n=3 bn

The radius of starlikeness now follows from (14) as the radius of convexity in
Theorem 5 followed from (12). To show that this is also the radius of
univalence, observe that if equality in (13) holds for

fa(2) = 2—(p/b2) 22 —((1 - p)/bs) 2",
then f,(ry) =0.
6. The family F, w),N({b,,}). Instead of fixing just the second coefficient,

one could fix finitely many coefficients. Denote by F p..(.')-N({bn}) functions in
F(!b,}) of the form

N N
7 Z _p"(_')zn(l)_ 2 a,z", where Z Pmiy =P < 1.
i=1 bn(i) n# n(i) i=1

Note, for N =1 and n(1) = 2, that F,, ;({b,) = F,(ib,).
As in Theorem 1, one can prove
THEOREM 7. The extreme points of F, ..(.-)'N({bn}) are

N L N 1=
z— Y Prs s gpg 7 Y Priiy my _ P n
i=1 by i=1 b b,

for n # n(i).

The characterization of the extreme points enables us to solve the
standard extremal problems in the same manner as was done for F,({b,}).
We omit the details.
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