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The present work is connected with papers [4], Section 2, and [5],
Sections 1 and 2. It is inspired by some results of Bonsall [1] and Porte-
nier [6].

In Section 1 we study a class of positive operators between ordered
vector spaces akin to order homomorphisms.

In Section 2 we relate this class to extreme extensions of positive
operators and to perfect ideals of Bomnsall.

Finally, Section 3 is devoted to a generalization, with a somewhat
simpler proof, of a Krein-Milman type theorem due to Bonsall.

Throughout, X and Y stand for ordered real vector spaces with X
being directed by its ordering. In Sections 2 and 3, Y is additionally as-
sumed to be an order complete lattice. For a subset A c ¥ we put
A, = {aeA:a>0}. Note that Y is directed if andonly f ¥ =Y, Y.

A vector subspace J — Y is called an order ideal provided it is order
convex, i.e. [a, b] = J for each a, b €J. In case Y has an order unit, the.
maximal order ideals are known to be precisely the kernels of positive.
functionals on X. This follows by .the Kantorovié¢ extension theorem
(see, e.g., [4], Theorem 1).

As in [4] and [5], given a vector subspace M <« X and T e L (M, Y),
we put

E(T)={8eL_ (X, Y): S| M =T}.

1. A class of positive operators. Let § e L (X, Y) and denote by I
the set of all # € X such that

(*) inf{S(v): oz < veX}
exists and equals 0. It is easy to see that

(i) 871(0), = I = 87%(0).

(ii) 8~1(0) and I are order ideals in X.

(iiiy I =1, —1, if and only if the infimum in (*) is attained for each
zel.
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To prove (iii) observe first that if # = #, —»,, where #; eI, , then
4+ < x,+2, and S(z,+2,) = 0. Conversely, if +z<ve X and S(v) =0,
then + =v—(v—a) and v, v—2 el .

Note that, if X is a vector lattice, I = {xr € X: 8(|z|) = 0}, whence I
is a wvector-lattice ideal.

Notation. Suppose Y is a vector lattice and denote by H(X, Y)
theset of all § e L (X, Y)such that the infimum in (*) exists for each # € X
and equals [S(z)].

Clearly, in case X is a vector lattice, 8 e H(X, Y) if and only if 8
is a lattice homomorphism. This equivalence can be generalized as fol-
lows.

THEOREM 1. Suppose SeL (X, Y). Then SeH(X,Y) and the
infimum in (x) is attained for each x € X if and only if the following two
conditions are satisfied:

(1) 87*(0) = 87'(0), —87%(0),..

(2) 8(X,) = {8(@),: ze X} (V).

Proof. The “if” part. In view of (2), given # € X, there exist v,, v, € X,
such that S(v,) = S(2), and 8(vy) = 8(z)_. Then 8(v,—v,) = 8(=),
so that, by (1), there exist a,, a; € §7'(0), with z = (v,+a,) — (v, + a,).
Hence +z < (v,+a;)+ (v2+a,). It follows that

18(x)] < 8(vy+v,) = |8(w)],

which yields the assertion.

The “only if” part. As § e H(X, Y), we have 8~!(0) .= I. Hence (1)
follows from (iii). To show (2), given z € X, take » € X such that +z <<
and the infimum in (*) is attained. Then 4+ < }(v+ %), and so we have

18 (@) = 8(x), +8(x) _ < S(}(v+2))+8(}(v—2)) = 8(v) = |8(=)I.

It follows that S(z), = 8(}(v+x)).

Condition (2) obviously implies that

(2) 8(X,) = 8(X),
and the converse implication holds provided 8(X) = Y. An operator
S eL(X,Y) which satisfies (1) and (2’) is sometimes called an order
homomorphism (cf. [7], p. 235). With this terminology we have

COROLLARY 1. Suppose that Se€L (X,Y) and S(X) =Y. Then
S e H(X, Y) and the infimum in (*) 18 attained for each x € X if and only
if 8 is an order homomorphism.

Note that condition (2) is automatically satisfied in case ¥ = R
The following example shows that (1) is not implied by the single assump-*
tion S e H(X, Y) even for X Archimedean and Y = R.

() Here S(x), denotes the positive part of §(z).
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Example (A. Iwanik). Let X be the vector space of all real poly-
nomials regarded as functions on [—1,1] with the pointwise ordering.
Define Se L, (X, R) by S(x) = #(0). It follows from the Weierstrass
theorem that S € H(X, R). Nevertheless, if ve X and +&<< (&) for
§e[—1,1], then »(0) > 0.

2. Extreme extensions and perfect ideals. Throughout the rest of
the paper we assume that Y is an order complete vector lattice. For
S8eL, (X,Y) and v € X we put

Sp(x) = inf{S(v): o< veX}.

An easy calculation shows that §,,: X — Y is sublinear. For each
zeX we have |S(x)]<8,(r) and the equality holds if and only if
S eH(X, Y) (see Section 1). In case X is a vector lattice, S, () = S(|z|)

for each z e X.
Let M be a vector subspace of X and let T'e L (M, Y). A simple

modification of the proof of Theorem 3 in [4] yields the following gener-
alization of both that theorem and Théoréme 3.5 in [6].

THEOREM 2. Suppose S € E(T). Then S eextrE(T) if and only if
inf {8, (x —2): z2€ M} =0 for each x € X.

The following is a generalization of Theorem 2 in [5]. The proof is
mutatis mutandis the same.

THEOREM 3. Let M be a vector subspace of X with M = M, —M_
and let Te H(M, Y). Then .

(a) extrE(T) =« H(X, Y).

(b) If inf{ly —T(2)|: 2€ M} =0 for each y € Y, then

E(I''nH(X, Y) c extrE(T).

Clearly, the first part of Corollary 2 and Corollary 3 in [5] can be

generalized in a similar way.

We say that a (proper) order ideal J < X is u-perfect, where u € X _,
provided for every # € J and every positive number & there exists =’ € J
such that + < «’'+eu. For u being an order unit of X this notion was
introduced and studied by Bonsall [1]. In this case we simply call J perfect
a8 the notion is independent of the choice of an order unit in X. Theorem 3
yields the following characterization of u-perfect maximal ideals which
is a slight generalization of Theorem 1 in [1].

CorOLLARY 2. Suppose we X, , SeL, (X, R), and S(u) = 1. Then
Seextr{T e L (X, R): T(u) =1}

if and only if 871(0) is u-perfect.
Proof. In view of Theorem 3, it is enough to show that 8 € H(X, R)
if and only if 8~'(0) is wu-perfect.
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Suppose first § € H(X, R) and S8(x) = 0. Then 8,,(x) = 0, so that,
given & > 0, there exists » € X such that +2 < v and 8(v) < &. It follows
that

v—8(®)ueS87(0) and Fr<(v —_,S(v)u)‘—lieu.

Suppose now 8~'(0) is u-perfect and z € X. Then, given & > 0 there
exists v € X such that

+z—8(@)u)<v and S((v)<e.

Hence +« < |8(x)|u+v, and s0 8, (z) < |8(2)|+e.
Applying Corollary 2 and an idea from Section 1 of [5], we shall
give new proofs of two known results.

THEOREM 4 ([1], Theorem 3, and [7], .Theorem-2.12). Suppose X
has an order unit u and J is a perfect ideal of X. Then J is contained in
a perfect maximal ideal. If J is the intersection of the maximal order ideals
of X containing J, then it is the intersection of the perfect maximal ideals
containing it.

Proof. Put X, =lin(Ju{u}) and T,(r+itu) =t for x €J. Then
TyeL, (X,, R) and, in view of Corollary 2,

Toeextr{T e L (X,, R): T(u) =1}.

By [5], Theorem 1, there exists S € extr E(T,). Hence, in view of [5],
Lemma 2, Seextr{T'eE, (X, R): T(u) =1}. As J < 87'(0), an appli-
cation of Corollary 2 completes the proof of the first assertion.

To prove the second assertion, note that, by assumption, given
x, € X\X,, there exists 8,e E(T,) with S,(z,) # 0. Then, modifying
slightly the proof of Theorem 1 in [5], we see that we can find S € extr E(T,)
with 8(x,) # 0. Hence the same argument as above shows that S~'(0)
is perfect.

Note that the first assertion of Theorem 4 implies readily Theorem 2
of [1]..(In [1] those results are obtained in the opposite order.)

3. A Krein-Milman type theorem. Using Theorem 1 of [5] again
and an idea of Bonsall, we shall prove a generalization of Theorem 4
in [1] which is itself a generalized form of a theorem originally due to
M. Krein and D. Milman. A similar result has been recently announced
without proof by Kutateladze ([3], Theorem 1).

'THEOREM 5. Let ‘W be a real vector space, let 'Y be an order complete
vector lattice, and let P: W — Y be a sublinear mapping. Then, given w, € W,
there ewists S e extr{T e L(W, Y): T (w) < P(w) for each w € W} such that
8(we) = P (w,).
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Proof. Put X = Wx Y and define an ordering in X by putting
(w1, ¥1) < (W2, Y,) provided w, = w, and ¥, = Y, OT Y;—Y, > P(wy —w,).
With this ordering X becomes an ordered vector space and {(0, y): y € Y}
is a majorizing subspace of X.

Define further a positive operator 7' on the vector subspace {(tw,, ¥):
teR, ye Y} by T'((tw,, ¥)) =tP(w,)+y. Let 8’ eextrE(T’) and put
8(w) = 8'((w, 0)). We show that 8(w)<P(w) for each we W. Take
yeY with P(w)<y. Then (—w,y)>(0,0), so that S( —w, y))
= 8(—w)+vy > 0. It follows that S(w)<<y. .

Finally, that 8 is extreme is a consequence of the following observa-
tion: each T, e L(W, Y) with T,(w) < P(w) for all we W and T,(w,)
= P(w,) gives rise to an operator T, € E(T') defined by T{((w_, v))
= T (w)+y.

Remarks. 1. Theorem 5 can be proved directly in a similar way
as Theorem 1 of [5] (cf. also [2], Theorem 1).

2 (S. S. Kutateladze). Theorem 5 implies directly Theorem 1 of [5].
Indeed, E(T) = {SeL(X, Y): 8(x)<T,(x) for each € X} and T, is
sublinear.

Postscript. 1. As easily seen, the map S,, can be alternatively defined as

for x € X. In this form, it has been already considered by S. Dubue, Fon-
ctionnelles linéaires positives ewtrémales, Comptes Rendus des Séances dc
I’Académie des Sciences, Série A, 270 (1970), p. 1502-1504, for a related
purpose.

2. Results related to Corollary 2 are contained in recent papers
by K. R. Goodearl, D. E. Handelman and J. W. Lawrence, Affine repre-
sentations of Grothendieck groups and applications to Rickart C*-algebras
and N,-continuous regular rings, Memoirs of the American Mathematical
Society 234 (1980), Section I.4, and by K. R. Goodearl and D. E. Handel-
man, Metric completions of partially ordered abelian groups, Indiana Uni-
versity Mathematical Journal 29 (1980), p. 861-895, Section 3. In the second,
a map is considered which, in our setting, coincides with §,,.

3. Theorem 5 is effectively equivalent to the axiom of choice (cf.
J. Lembcke, Two extension theorems effectively equivalent to the axiom of
choice, Bulletin of the London Mathematical Society 11 (1979), p. 285-288).

4. For a generalization of Theorem 5 and other related results sec
H. Luschgy and W. Thomsen, Extreme points in the Hahn-Banach-Kanto-
rovié setting, Pacific Journal of Mathematics, to appear.
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