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Let T be the circle group and Z the ring of integers. In this paper
we compute the Haar measure of the closure in Z (the Bohr compactifi-
cation) of certain arithmetically interesting sequences of integers. For facts
about harmonic analysis on LCA groups the reader is referred to [2]
and [6].

In what follows D is always a dense subgroup of T (cf. [4], p. 4).
We endow D with the discrete topology and let D be the compact dual
group of D. The normalized Haar measure of D will be denoted by mp
and the closure of E in D by E. We denote by E the closure of Ein Z.

THEOREM 1. Let B = (n,)2, = Z. Then mz(E) <mD(E), and 8trict
inequality may oblain.

Proof. Let 4 be the annihilator of D in Z. Then D is isomorphic
to Z/A. The natural homomorphism from Z to D is given by n:y »> y|D
(y € Z) and kern = A. Since D is dense in T, we may identify ¥ and = (E).
Consider any compact set K = D. Put

K ={yeZ: n(y) e K} = xY(K).
We claim that
(1) mz(K) = mp(K) (K compact in D).

To confirm this let £z be the characteristic function of K. Then

mz(K) = f&go:mdm;.
zZ

Using (2) of [6], p. 54 (Weil’s formula), it can be shown that

mz(K) = [ f £z (n(z+2) dm4(2)@mp (), where & = n().
DA
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Inasmuch as = is a group homomorphism, we gather that
mz(K) = [ &z (&)dmp(3)
b

so mz(K) = mp(K). ) ~

Next, let £ « Z and consider £ and E. Since
(2) E < a~'(B), \
the inequality of Theorem 1 is a consequence of (1) and (2)._

Finally, let £ = (2" +n);’_,. It can be shown that mz(£) = 0. Now,
in the group D of 2-adic integers (see [2], p. 107), 0 is the unique limit
point of (2™>%_,. Since Z* is dense in i), so is E. This means that my (E)
= 1 and the proof is complete.

CorROLLARY 1. If B s countable in some i), then mz(E) = 0.

Example. Fix any two sequences {a,>q; (a; #1) and <>,
of natural numbers. Let

E, = {a,a,...a,k: k =0, +1,..., 4b,},

and put
E =|JE,.
n=1
Then mz(E) = 0. In fact, mz(E+... +E)= 0 for any sum of finitely
many £’s.

To prove this, take
D = {exp[2nir/a,...a,]: r€Z and n e Z*}

as our dense subgroup. It follows that 0 is the only accumulation point
of B; see [5] and [2], p. 107 and 403, in this connection. Thus, ¥ is a count-
able set, and so Corollary 1 now gives mz(E) = 0. It- also follows that
any set of the form K+ ... + E = (E+ ... +E)” must also be null in
Z, since £+ ... + B is countable in D. .

To illustrate our example let 4 = {n,!...n,!: n,,keZ*} and for
any natural number m put A™"=A4+4...4+ 4 (m summands). Then
mz(4,,) = 0.

To see this let a, = 2 for all »n. For any natural number n, we observe
that 2”1, where ! is odd, can represent only a finite number of integers
each of which is a product of factorials. So, let b, be the largest such 1.

Let E be as in the previous example. Then it is possible to prove the
following more general result:

Let E* denote the set of accumulation points of E in Z and let Gq,(E)
be the group generated by E°. Then mz(G,(E*) = 0.
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To prove this assertion notice that 0 is the only accumulation point
of F in D. Inasmuch as D is a quotient group of Z, we gather that E* < 4,

where A is the annihilator of D in Z. Suppose that mz (G, (E%) > 0. We shall
force a contradiction:
It follows from a tBeorem of Steinhaus that 4 is an open subgroup

of Z. Thus D is discrete and compact. The last statement forces D to be
finite and this contradicts the fact that D contains the integers.

THEOREM 2. The closure.in Z of the following sets of integers has Haar
measure zero:

(a) the set 2 of prime powers;
(b) the set & of square full integers;
(c) the set D of integers expressible as the sum of two squares;

m
(d) any set B of all finite sums of the form Zsi”u where ¢; € {0, 1} and

{np2, 18 a sequence of positive inlegers such that n; |, for all © and
n;+1/n, > 2 for infinitely many 1.

Proof. (a) Let p; be the i-th prime and let m;, = p, ... p, for k€ Z+.
Given & > 0, it is easy to see that ¢(m,;)/m; < ¢/2 for k sufficiently large
(¢ is Euler’s function). Now, {p':t € Z*, ptm,} is a subset of the union
of the reduced residue classes (modm,) and, by the above, this union has
density less than &/2.

Choose r € Z* so large that

11 &
ZW'<5°

ptmy

Then, all but finitely many elements of the set {p‘':teZ*, p|m,}

are in the set | Jp"*'Z which has density less than /2. The exceptional
pimy,
members are Py, ..., Ply ...y Pis+--y Pr. Thus, with the exception of fi-

nitely many members, £ is a subset of a union of residue classes and this
union has density less than ¢/2 +¢/2 = . Inasmuch as the characteristic
function of a residue class is the Fourier-Stieltjes transform of a discrete
measure on T, it follows (and this is well known) that the Haar measure
of the closure of a residue class is equal to its density. Thus we infer,

since ¢ > 0 is arbitrary, that mg(.a) = 0.

(b) Recall that a positive integer is square full if all exponents in
its canonical factorization are greater than 1.

For each k € Z* and for each 1 < ¢ < k, the set & is a subset of the
union of p} — (p; —1) residue classes (modp?); namely those residue classes
not generated by p;, 2p; ..., (p;—1)p;. Thus, & is a subset of a union
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of residue classes (modp?... pi), the density of this union being

2__(p;—1
3) ”p (ps )

Since this product diverges to zero as k — oo, we have m;(.?’)= 0.
COROLLARY 2. Let & = {n*:neZ*,k>2}. Then mz(é) = 0.
Proof. All elements of &, except 1, are elements of <.

(e) It is well known that an integer d is in 2 if and only if every prime
of the form 4n-+3 which divides d appears with even exponent in the
canonical factorization of d. Let p; be the ¢-th prime of the form 4n 3.
The proof now follows as in (b) and we infer that 2 is a subset of a union
of residue classes (modp?...p:), the density of this union being equal
to product (3). This product diverges to zero as k — oo by Dirichlet’s
theorem, so m;(é) = 0.

(d) Choose & > 0. There is a positive integer N such that 2¥!/n, < e.

Now £ is a subset of the union of 2¥~! residue classes (modny);
N-1

namely those residue classes generated by all integers of the form > ¢mn,,
i=1

¢; € {0, 1}. This union has density 2V~ /n, which is less than e. Since ¢ > 0
is arbitrary, we may conclude that mz(®#) = 0.

Comments. (i) In contrast to part (b) of Theorem 2, the Haar

measure of the closure in Z of the set ¥ of integers expressible as a sum of
three squares is at least 5/16. This follows from the fact that an integer
is expressible as a sum of three squares if and only if it is not of the form

4(8k+7), j, k>0, which, in turn, implies that mz@u —5) = 5/8.
It then follows that mz(¥) > 5/16.

(ii) In contrast to part (¢) of Theorem 2, the Haar measure of the clo-
sure in Z of the set of non-square free integers (positive and negative)
is 1 —6 /a2 This follows from the fact that [[(1—p~?) = 6/a% where the
product is taken over all primes p. Thus the Haar measure of the closure
in Z of the set of positive non-square free integers is at least 1/2 —3/n2.

(iii) All the sets £+ ... 4 F in the Example are Rosenthal (see [5]).
It would be interesting to know if the closure of every Rosenthal set in

Z has Haar measure zero. This question remains open even for Sidon sets.
One _positive result is the following: If H is a Hadamard set, then
mz(H) = 0 (see [3]).

(iv) For related work, the reader is referred to [1].

The authors wish to thank Sadahiro Saeki for helpful conversations.
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