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1. Introduction. All analysts are familiar with the devil’s staircase
defined as the unique continuous function g : [0,1] — R with

o0 o0
g(22cz,-3“) = Zaﬂ“ for ay,a,,...€ {0,1}.

i=1 i=1
See e.g. [9], p- 99. Let us summarise some of its properties.

LEMMA 1.1. There is a continuous function g : [0,1] — R together with
a collection G of disjoint closed subintervals of [0,1] having the following
properties.

(i) 9(0) =0, g(1)=1.
(ii) g is increasing.
(iii) If z € (0,1] but = & U, ycgl@, b] then given any 6 > 0 we can find
[a,b] € G such that § > 2(b—a) >z —a > 0.
(iii) If z € [0,1) but = & U, yegla, b] then given any § > 0 we can find
[a,b) € G such that 6§ > 2(b—a)>b—z > 0.
(iv) g is constant on each [a,b] € G.

Proof. Easy. We take

N-1 . N-1 .
G={[2Y a3 43", 2) a3 +2.37M|:

i=1 i=1

ay,...,aN-1 € {0,1}, N> 1}. [ |
We now form a “devil’s hump” f : [0,1] — R by setting
f()=g(2t) for 0<t<1/2, f()=f1-1t) for 1/2<t< 1.
We define an associated F in the obvious way by
F=|J{la/2,b/2],[1 - b/2,1 - a/2] : [a,b] € G},

and observe that f is constant on each [a,b] € F.

1980 Mathematics Subject Classification: Primary 26 A30.
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Let us write x g for the characteristic function of the set E (so xg(t) =1
ift € E, xe(t) = 0 otherwise). We now produce iteratively a sequence of
functions f, : [0,1] — R and sets F(n) by the rule fo = 0, F(0) = [0, 1]
and

fa@) = f(@)+ D (b= a)X(apy(e)fa-1((z — @)/(b - a)),
[a,b]€F
F(n)={[a'+a(b —d'), a" + b0 -d')]:[a,b] € F, [d,b]€F(n-1)}.
Observe that

fram(@) = fm(@)+ D) (b= 0)xpay(2)fal(z - )/(b - a)).
[a,b]€F(m)
Since this is the construction which forms the main theme of this paper the
reader is strongly urged to draw a few diagrams at this point.

THEOREM 1.2. (i) The sequence f, converges uniformly on [0,1] to a
continuous function F satisfying the relation

F(z)=f(z)+ ) (b= a)xap(2)F((z - a)/(b~a))
[a,b]€F(m)

for all z € [0,1]. We have F(0) = F(1)=0, F(1/2)=1.

(ii) F(z) = F(a) + (b — a)F((z — a)/(b — a)) for all z € [a,)], [a,b] €
F(m).

(iii) If z € [0,1] and é > 0 we can find an m > 1 and an [a,b] € F(m)
such thatz € [a— (b—a),b+ (b—a)] and § > b —a.

(iv) F is nowhere differentiable.

Proof. (i) Easy. Observe that || fu+1 = frlloo < 37| fa = fr-1lco-

(ii) Follows from (i) or from the relation between f, 4+, and f,, obtained
in the paragraph above.

(iii) Observe that either 2 € U, yer(n)[@:0), = & Uls pjex(nt1)[a5 0] for
some n and apply Lemma 1.1(iii) and (iii)', or = € U, ye7(n)la,b] for all n
and the result is trivial.

(iv) Let z, 6 and [a,b] be as in (iii). Then

F((a+b)/2) - F(z) = F(a) + (b— a) — F(z) = F(b) + (b - a) - F(z).
Since |z —a|, |z —-b], |t —(a+b)/2| <2(b—a) and § > 0 is arbitrary this
is not consistent with differentiability at z. =

The following two related “devil’s ramps” are much less well known than
the staircase.

THEOREM 1.3 (Pompeiu). There is a continuous function g : [0,1] - R
which is differentiable everywhere with bounded derivative, which is strictly
increasing and yet has zero derivative on a dense subset.
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Proof. For the proof which is “quite elementary and understandable”
see [9], p. 83. =

By stretching the points of zero derivative into intervals or by modifying
the technique of Katznelson and Stromberg set out in [9], pp. 80 to 83, or [5]
we obtain the following function.

THEOREM 1.4 (Zahorski). There is a continuous function g : [0,1] — R
together with a collection G of disjoint closed subintervals of [0,1] having
the following properties.

(i) 9(0) =0, g(1)=1, ¢'(0)=4'(1)=0.

(ii) g is increasing.

(iil) Ulq,p1egla, ] is dense in [0,1].

(iv) g is differentiable and there ezists a K such that 0 < ¢g'(z) < K for
all z € [0,1].

(v) g is constant on each [a,b] € G.

Let us see what happens if we define f, F, fo and F(n) as before but
this time set

fa(@) = f(2)+ ) (b= a)*X(a5(2)fn-1((z = @)/ (b - a)).

[a,b]€F

THEOREM 1.5. Let a > 1. Then

(i) The sequence f, converges uniformly on [0, 1] to a continuous func-
tion F' satisfying the relation

F(z) = f(z)+ Y (b—a)*x(a4(2)F((z - 0)/(b- @)
[a,b]eF

Jor all z € [0,1].

(ii)) F(z) = F(a) + (b—a)*F((z — a)/(b - a)) for all z € [a,d), [a,b] €
F(m).

(iii) If z € [0,1] and 6 > 0 we can find an m > 1 and an [a,b] € F(m)
such that (z — 8,z + 6) D [a,b).

(iv) If z € [0,1] and § > O then F is not monotonic in the interval
(z-46,z+6)n[0,1].

(v) F is differentiable with bounded derivative.

Proof. Parts (i) to (iv) echo Theorem 1.2. To prove (v) observe that if
6 is the largest length of any interval in F then § < 1/2 and

sup |fr41(2) = fu(@)l < sup |fa(z) - faoa(2)l-
z€fo,1] z€[o,1]
Thus f] converges uniformly to some bounded function A and standard

manipulations using the mean value theorem (see e.g. last pa.ra.graph but
one of p. 84 of [9]) show that F is differentiable with derivative h. =
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The existence of a nowhere monotone function with bounded derivative
just proved is a famous theorem of K6the. The elegant proof of Katznelson
and Stromberg is given in [5]. A Baire category proof was given by Weil [10].

The remainder of this paper is devoted to embroidering the themes
above. The proofs are left to the reader since one of my claims is that
they are simple enough to be left to the reader. However, I should be glad
to send on request the M.S. of my first draft in which the details are spelt
out at great length. (Caveat emptor—the first draft has not been refereed,
revised or checked.)

The topics dealt with in this paper have an enormous and, to all but
the most persevering, hidden literature. I have relied on [2] and [9] for
background and apologise in advance for any inadequacies in attribution. I
hope that the general conception of this paper is original even if many of
the specific results are not. (Even here it must be admitted that something
along these general lines must be hidden in Besicovitch’s original paper [1].)

2. Best staircases and ramps. From our point of view the best
behaved version of the staircase of Lemma 1.1 that I can obtain is the
following.

LEMMA 2.1. Let ¢ : [0,00) — [0,00) be a continuous increasing function
with t714(t) > 2 for all 0 <t < 1 and t™19(t) — 00 ast — 0+ and let
1>¢e>0. Then we can find a continuous function g : [0,1] —» R together
with a collection G of disjoint subintervals of [0,1] having the following
properties.

(i) 9(0) =0, g¢(1)=1.
(ii) g #s increasing.
(iii) If z € [0,1) but = & U, yyegla, b] then given any § > 0 we can find
an [a,b) € G such that (14+6)(b—a)>b—-2>0andé > b—a.
(iii) If z € (0,1) but z ¢ U[a,b]EG[a’b] then given any é§ > 0 we can find
an [a,b] € G such that (1+6)(b—-a)>z-a>0andé > b—a.
(iv) g is constant on each [a,b] € G.
(v) lg(z) — 9(¥)| < ¥(|z - ) for all z,y € [0,1].
(vi) If [a,b) € G then b—a < &.
(vii) If [a,b] € G thena #0, b# 1.
Proof. This is tedious but routine. I suggest that my readers do not

stop to prove it now but return to it after reading the rest of the paper if
they need to cross every t. =

Conditions (vi) and (vii) are merely technical conveniences and the im-
provement in (iii) and (iii)’ is not very important. The basic improvement
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is the Lipschitz smoothness condition on g given in (v). We can make ¢
Lipschitz 1 at the price of weakening conditions (iii) and (iii)’.

LEMMA 2.1*. As for Lemma 2.1 but with condition (iii) replaced by
(iii)* If z € [0,1) but = & U, yegla, ] then given any 6 > 0 we can find
an [a,b] € G such that y(b—a)>b—2z2 >0 and é§ > b - a,
condition (iii) modified similarly to (iii)'* and condition (v) replaced by
(v)* lg(z) — g()| < (1 + €)|z - .
Proof. Much as for Lemma 2.1. =

It is, fairly obviously, impossible to combine Lemmas 2.1 and 2.1*.

LEMMA 2.2. Let K > 0. Suppose g : [0,1] — R is a continuous function
and G a collection of disjoint closed subintervals of [0,1] with the following
properties.

(i) g is constant on each [a,b] € G.
(ii) |9(2) — 9(y)| < K|z — 9| for all z,y € [0,1].
(iii) If z € (0,1] but = & U, yegla, b] then given any 6 > 0 we can find
an [a,b] € G such that K(b—a)>z—-a>0and 6 > b-a.

Then g is constant.

Proof. Use (iii) and the Lebesgue density theorem ([9], Theorem 21.29)
to show that, in the sense of Lebesgue measure, almost all z € [0, 1] lie in
Uls.segl@ 8] Now use (i) and (ii). =

However, we can improve Lemma 2.1* by converting the staircase into a
ramp.

LEMMA 2.1**. As for Lemma 2.1* but with condition (v)* replaced by
(v)** g is everywhere differentiable with 0 < g'(z) < 1+ ¢ and ¢'(0) =
g'(1)=0.
(It is perhaps worth remarking that the mean value theorem now shows
that max(1,z + €) > g(z) > min(0,z — ¢) for all z € [0,1].)

Proof. This follows from a general result of Bruckner (Theorem 6.8,
Chapter II of [2]). However, it is easy (though the detail, as always, is te-
dious) to construct such a function by hand either by stretching Pompeiu’s
construction ([9], p. 83) or by modifying the technique of Katznelson and
Stromberg ([9], p. 80). Again I suggest that readers defer further consider-
ation until at least Section 3 below has been read. =

3. A selection of roller coasters. It is clear that the function of
Lemma 2.1 can be modified to obey the extra condition
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(viii) There exists an 7 > 0 such that g(¢)=0for 0 <t < 9

and that the function and interval collection of Lemma 2.1** can be made
to satisfy

(viii)** There exists an 7 > 0 such that g(¢) = 0 for 0 < t < 7 and
[0, 7]\ U[s,4egla, b] has positive Lebesgue measure.

Now choose 9(t) = —tlogt for t close to 0 (so that t=*y(t) — 0 as
t — 0+ for all @ < 1). We now form our hump function f : [0,1] — R by
f(t) = f(1—1t) = g(2t) for all 0 < ¢t < 1/2 and the associated F just as
before.

THEOREM 3.1**. Suppose we form f from the g of Lemma 2.1** modified
to obey (viii)** and set fo =0,

fa(z) = f(2)+ Y (b= a)xa,5(2)fa-1((z — 0)/(b - a))

[a,b]€F
forallz €[0,1], n > 1.

(i) If @ < 0 and 7 is the real number such that 3, ye (b —a)*™*! =1
then f, converges pointwise almost everywhere to a measurable function F
with F € L? for all 1 < p < r. However, if I is any subinterval of [0, 1]
then x1F ¢ L.

(ii) If a = 0 then f, converges pointwise almost everywhere to a mea-
surable function F with F € L? for all 1 < p < 00. However, if I is any
subinterval of [0,1] then x F ¢ L*°. '

(iii) If 0 < a < 1 then f, tends uniformly to a continuous function F
with

supsup |F(z + k) — F(z)||h|™* < oo.
r h#0

However, there ezists a A > 0 (depending on a) such that each subinterval
of [0,1] contains an uncountable set of points y with

limsup |F(y + h) — F(y)| ||~ 2 A > liminf |F(y + k) = F(y)| |k|~® = 0.
h—0 —

If 0 < a < f then
limsup |F(z+h)-F(z)| |h|™® = 00 and liminf | F(z+h)—F(z) Ih=? =0
h—0 -

Jor all z € [0,1].

(iv) If @ > 1 then f, tends uniformly to a nowhere monotone differen-
tiable function F with bounded derivative on any subinterval of [0,1]. Every
subinterval of [0,1] contains a set of a positive Lebesgue measure on which
F' is zero.
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THEOREM 3.1. Suppose we start with the g of Lemma 2.1 modified to
obey (viii) and set fo = 0,

fa(@) = f(2)+ Y (b= a)*X(a4(2) fn-1((z = @)/ (b - a))

[a,b]€F
forallz €[0,1], n > 1.

(i) If a < 0 then fp(z) — oo almost everywhere.
(ii) If 0 < a < 1 then f, tends uniformly to a continuous function F
with
supsup |F(z + h) — F(z)||h|™* < oo,
z h#0

However, there ezists a A > 0 (depending on a) such that
limsup |F(z + h) — F(z)||h|7* > A > lihmitx)lf |F(z + h) — F(z)| |h|]™* =
h—0 -

Jor all z € [0,1].

(iii) If o = 1 then f, tends uniformly to a continuous function F which
is nowhere differentiable on [0, 1].

(iv) If a > 1 then f, tends uniformly to a continuous function F of
bounded variation which has derivative zero almost everywhere but is not
monotone on any subinterval of [0,1].

Proofs. The claim of this paper is that these proofs may be left to the
reader. =

(Note in connection with (iv) that if sup, supj 4o |G(z+h)-G(z)| |R|™! <
oo then G is of bounded variation in every interval and so differentiable
almost everywhere. A function exhibiting the kind of behaviour shown in
Theorem 3.1(ii) has been constructed by Kahane using the methods of [4].)

There is no reason why we should confine ourselves to humps. For ex-
ample we could return to staircases and ramps by taking F, F(m) as be-
fore, defining f : R — R by setting f(t) = 0 for t < 0, f(t) = g(2t) for
0<t<1/2, ft)=1+g(2t-1)for1/2<t<1land f(t)=2fort>1,
and taking fo(t) =0,

fa®) =)+ ) (b-a)*fa1((t - a)/(b- a))
[a,b)€F

for all t € R. I leave the investigation to the reader observing that it should
produce among other things the following examples.

LEMMA 3.2. (i) There ezists a strictly increasing differentiable functicn
F :[0,1] > R with bounded derivative such that each subinterval of [0, 1]
contains a set of positive measure on which F' is zero.
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(ii) Let % : [0,00) — [0,00) be a continuous increasing function with
t=14(t) = oo ast — 0+ and y(t) > 2t for allt > 0. Then there ezists
a strictly increasing function F : [0,1] — R which is almost everywhere
differentiable with derivative zero and satisfies

sup sup |F(z + h) — F(z)| ¥(h)™! < oo.
T h#0

Another kind of modification is illustrated in the next lemma.
LEMMA 3.3. Let 0 < 0 < 1. Foreachn > 1letg, :R — R be a

continuous function of bounded variation and let G(n) be a family of disjoint
closed subintervals of [0,1] with the following properties.

(i) lga(t)l £ 1 for allt € [0,1], n > 1, gn(0) = gn(1).
(ii) gn is constant on each [a,b] € G(n).
(iii) If [a,d]) € G(n) then b—a < 6.
(%) Stoseqin(b=a) = 1.
Set }-(0) = {[0’ 1]}’ fO = 0’
F(n)={la+d'(b-a),a+b/(b—a)):[a,b] € F(n-1), [¢,b] € G(n)},

fa(@) = fas1(@)+ ) (- a)x1ay(2)ga((z — a)/(b - a))
[a,b]€F(n-1)
forallz €[0,1], n>1.
Then f, converges uniformly to a continuous function F' which obeys the
following two dichotomies.

(A) FEither F is of bounded variation on [0,1] or F is not of bounded
variation on any subinterval of [0,1].

(B) FEither F is differentiable with derivative zero almost everywhere or
F has zero derivative almost nowhere on [0,1].

Proof. Observe that we can find a continuous function Fy : [0,1] - R
such that

F(z) = fa()+ ) (b= a)xpa,u(z)Ful(z - a)/(b - a))
[a,b)€F(n-1)
and so F(z) = F(a) + (b — a)F,((z — a)/(b — a)) for all z € [a,b], [a,d] €
F(n — 1). Now use standard arguments. =

At first glance Lemma 3.3 seems to yield four possible outcomes. How-
ever, simple modifications of a theorem of Fubini ([9], Theorem 4.14) show
that if F' is of bounded variation then F has derivative zero almost every-
where. Theorem 3.1(iii) and (iv) shows that two of the remaining possibil-
ities occur. I leave it to the reader to show that the remaining possibility
can occur.
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LEMMA 3.4. Let ¢ : [0,00) — [0, 00) be an increasing continuous function
such that t~1¢(t) —» 0 ast — 0+. Then we can choose g, and G(n) in
Lemma 3.3 in such a way that

(i) F has derivative zero almost everywhere.
(ii) F is not of bounded variation on any subinterval of [0,1].
(iii) There ezists a K such that if 0 < z9 < 27 < ... < z, < 1 then

Y =1 8 F(z5) — F(zj-1)l) < K.
4. Besicovitch’s nowhere differentiable function. If F: R — R is
a function then for each z € R we can define the upper right derivative

D% F(z) = limsup F(z +h) - F(z)
h—0+ h

and lower right derivative

. ¢ F(z+h) - F(z)
D, Fle) = i SER=EE)
The corresponding left derivatives D~ F, D_F are obtained by replacing
“h — 04+” by “h — 0-". In 1925 Besicovitch proved the following result.

THEOREM 4.1. There ezists a continuous function F : R — R such that
D*F(z) > D4+ F(z) and D~ F(z) > D_F(z) for all z.

Such functions are rare (in the sense that their restrictions to [a, b] form
a set of the first category in C([a,d]) under the uniform norm, see [2],
Ch. XIII). Besicovitch’s proof had the reputation for being difficult and
was reworked by E. D. Pepper [7], A. P. Morse [6] and R. L. Jeffery [3]
(Section 7.3). In this section we give yet another reworking based on [3]
obtaining the stronger result of Morse [6)].

THEOREM 4.2. There ezists a continuous function G : R — R such that
D*G(z) > D4+G(z), D~G(z) > D_G(z) and in addition max(D*G(z),
~D*G(z)) = max(D~G(z),-D~G(z)) = oo for all z € R.

In some sense this result is best possible. A simple argument based on
supporting hyperplanes (i.e. lines of support) shows that we cannot hope,
for example, to have D*G(z) > 0 > D,G(z), D~G(z) > 0 > D_G(z) for
all z.

Our first task is to find a suitable staircase function.

LEMMA 43. Let 1 > a > 0 and v > 1 be such that ay < 1. Then we
can find 1/2 > X > 0 together with a continuous function g : [0,1] — R and
a collection G of disjoint closed subintervals of [0,1] having the following
properties.

(i) g(0) =0, g(1)=1.
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(ii) g is increasing.
(iii) If z € [0,1) but = & U, yyegla, b] then given any 6 > 0 we can find
an [a,b) € G such that (b—a)'/">b—z>0and§>b-a.
(i)’ If z € (0,1] but = & U, yegla, b] then given any 6 > 0 we can find
an [a,b) € G such that (b—a)'/*>z—-a>0and§> b -a.
(iv) g is constant on each [a,b] € G.
(v) For each 1 > ¢ > 0 we can find a K(c) such that |g(z) — g(y)| <
K(c)lz — y| for all z,y € [c,1].
(vi) If [a,b) € G thena #0, b # 1.
(vii) g(z) > Az for all z € [0,1].
(viii) g(b) — 2=*(b — a)® > Ab for all [a,b] € G.
(ix) z71g(z) — o0 as T — 0+.
(x) We can find a sequence of intervals [an,b,)] € G with g(b,)—
27%(by, — an)® = Ab,, for alln > 1 and with b, — 0 as n — oo.

(The new conditions (vii) to (x) are intended to give us firm control over
the behaviour of g(z) as z — 0+. It will be clear from the proof that we
could replace (v) by

(v)* g is differentiable with bounded derivative on each [c, 1] with ¢ > 0,

but we do not need to.)

Proof. Take A = 8! and set ag = 1, a, = 27%2*"1 b, = 272" for
each n > 1. Define g(0) = 0, g(1) =1 and g(z) = Ab, + 27%(b, — a,)* for
T € [an,b,) and n > 1 (thus automatically satisfying (x)).

By rescaling Lemma 2.1* or Lemma 2.1** we know that given any
€(n) > 0 we can define g on [b,, a,_;] together with a family G(n) of disjoint
closed subintervals of [by,@a,—1] in such a way that

(i)n g is continuous on [b,,an—1].

(ii),, g is increasing on [b,,ap—1].

(iii), If z € (bn,an—1] but z & U[a,b]GG(n)[a’b] then given any § > 0 we
can find an [a,b] € G such that (b—a)'/* >z —-a>0and 6§ > b —a.

(iii)}, The standard mirror condition of (iii), holds.

(iv)n There exists a K(n) such that |g(z) — g(y)| < K(n)|z — y| for all
z,y € [bm an-l]-

(v)n If [a,b] € G(n) then a # by, b# bp_;.

(vi)n If [a,b] € G(n) then |b— a| < g(n).

We have now defined g as a continuous increasing function on [0,1]. We
take G = {[an,bs] : » > 1}UJ;~; G(n) and observe that conditions (i) to
(vi) are automatically satisfied. Next we observe that if z € [a,,a,-1] then

z79(2) 2 a;119(an) 2 27051, (bn — an)* 2 2277 12-CrD)e

n
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Thus (ix) holds and g(z) > 2Az for all z € [0,1]. Provided we take (n)
small enough conditions (vii) and (viii) follow at once. =

We now form our roller coaster.

THEOREM 4.4. Let g and G be as in Lemma 3.3. Set f(t) = g(2t) for
0<t<1/2, f(t)=f(1—1) for 1/2<t <1 and write

F=|J{la/2,b/2],[1 - b/2,1~a/2] : [a,b] € G }.
Let fo =0, F(0) = [0,1],

fa(@) = f() = ) (b= 8)*X(ap)(2) fa-1((z — @)/ (b~ a))
le.SjeF for all z € [0,1],

F(n) = {[a’' + a(b) - a'),a’ + b(b' - d')] : [a,b] € F, [',b'] € F(n-1)}.
Write E(n) = |J{[a,d) : [a,b] € F(n)}.

(i) fn tends uniformly to a continuous function F with F(0) = F(1) =
0, F(1/2) =1, F(1-z)= F(z) satisfying

F(z)=f(z)- ) (b-a)*F((z—a)/(b—a)) forall z €0,1].
[a,b)€F

(i) 1> f(2) > F(z) > fo(x) > 2Xa for 3 € [0,1/2].

(iii) If z € E(1) then we can find y,z with z < y < z < 1 such that

(F(y) - F(z))/(y—=2) 20, (F(z)- F(z))/(2—12) <0,
max((F(y) - F(z))/(y — z),|(F(z) - F(2))/(z - z)|) 2 A.
(iv) Ifz € E(1) and z # 0,1 then D F(z) = —00, D*F(z) > —o0.
(v) D*F(0) = 00, D4F(0) < 4.
(vi) If € o=y E(m) then D¥ F(z) > 0 > D, F(z) and max(D* F(z),
|D4 F(z)|) = oo.
(vii) Ifz € E(m—-1)\ E(m) then D* F(z) > D, F(z) and max(D* F(z),
D4 F(z)]) = co.
(viii) If z € [0,1) then Dt F(z) > D, F(z) and max(D* F(z),|D4 F(z)|)
= oo.
(ix) If z € (0,1)] then D~ F(z) > D_F(z) and max(D~ F(z),|D-F(z)|)
= 00.
(x) If G is the periodic function of period 1 given by G(z) = F(z) for
z € [0,1] then G satisfies the conditions of Theorem 4.2.

Proof. (The reader is advised to sketch f;, f; and F.)
(i) Standard.
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(ii) Conditions (vii) and (viii) of Lemma 4.3 are designed so that fy(z) >
2)z for z € [0,1/2]. Thus fo(z) > 0 for all z € [0,1] and since

F(z)=fa(z)+ Y (b—a)*xay(2)F((z - a)/(b- a))
[a,b]€F(2) '

we must have F(z) > 0 for z € [0,1] and the result follows.

(i) If0<z<1/2takey=1/2, 2 =1. If z > 1/2 then z € [a,b) for
some [a,b] € F. Take y = b, z =1 and use condition (vii) of Lemma 4.3.

(iv) Since z € (0,1) we know from Lemma 4.3(v) that we can find > 0
and K > 0 such that whenever |y — z| <  we have |f(z) - f(y)| < K|z - y|.
By condition (iii), or (iii)}, we can find [a,,b,] € F such that (b, —a,)!/7 >
T —ay, > 0and b, — a, — 0. Set ¢, = (an + b,)/2 and observe that

F(en) = f(en) = (bn — an)*F(1/2) = f(cn) — (bn — aa)%,
F(z) = f(z), F(bn) = f(bn).
Thus for large n

(F(bn) — F(2))/(bn — 2) = (f(bn) — f(2))/(brn — z) < K
whilst
(Fen)=F(z))/(ca—2) £ K—(bn—8n)*/(bn—2) < K—(bp—2)*""" — —00

as n — o0o. The result follows.

(v) Conditions (ix) and (x) of Lemma 4.3 were chosen specifically to
make this true. By (x) we can find a sequence [a,,b,) € G with f(b,) —
(bn — @n)* = 2Xb,. Setting ¢, = (an + b,)/2 we have F(b,) = f(b,),
F(cn) = f(en) — (bp — an)™ = 2Xb, so (F(bs) — F(0))/by, = f(bs)/bn — o0
as n — oo by Lemma 4.3 (ix), and (F(¢c,) — F(0))/cn = 2Abp/cn < 4). The
result follows.

(vi) Rescale (iii).

(vii) Rescale (iv) and (v).
(viii) This is just (vi) and (vii) combined.

(ix) Symmetry.

(x) Obvious. =

Remark. Throughout this proof we have to keep in mind that “K > L”
does not imply “Koo > Lo” unless K >0 > L.

5. Elaborations. The results of Sections 4 and 5 when put together
suggest the following three results.

THEOREM 5.1. Let 1 : R — R be a continuous function with ¢(t) = ¢¥(-t)
for allt, ¥(0) =0, (t) increasing and t~14(t) decreasing as t runs from
0 to oo, t~1¢(t) > oo ast — 0+. Then we can find a continuous function
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F :R — R satisfying
supsup |F(z + h) — F(z)|$(h)™! < 00
T h#0

such that F(z) = F(-z), Dt F(z) > D, F(z) and max(D* F(z),|D4 F(z)|)
= oo for each z € R.

THEOREM 5.2. Under the hypotheses of Theorem 5.1 we can find a con-
tinuous function F : R — R satisfying

sgp sup |F(z + h) — F(z)|¥(h)™! < 00

such that F(z) = F(—z) and

h:r_ngup(F(:r + h) — F(z))yp(h)"1 > 0> llmmf(F(:c + h) — F(z))y(h)1,

limsup(F(z + h) — F(z))y(h)™! - liminf(F(z + h) — F(z))¥(h)™? > 1,
h—0+ h—0+

for each z € R.

THEOREM 5.3. Let ¢ and ¢ both satisfy the conditions set out in the first
sentence of Theorem 5.1. Suppose further that ¢(t)~4(t) = oo ast — 0.
Then we can find a continuous function F : R — R satisfying

supsup |F(z +h) ~ F()lp(h) " < o0

such that F(z) = F(-z) and
limsup(F(z + h) — F(z))¢(h)~! > 0 > liminf(F(z + k) — F(z))é(h)7?,
h—0+ h—0+

limsup(F(z + h) — F(z))p(h)™! - liminf(F(z + h) ~ F(z))p(h)™! = oo,
h—0+ h—0+

for each z € R.

The following three trivial remarks show that, at least in some directions,
these results are best possible.

(1) At a maximum limsup,_¢, (F(z + k) — F(z))y(h)~! <0.

(2) If sup, sup, 4 |F(z + h) — F(z)|(h)™! < oo for all 9 of the type
specified in Theorem 5.1 then in fact sup, sup, 4 |F(z+h)—F(z)||h|™! < 00
so F is locally of bounded variation and so differentiable almost everywhere.

(3) If F is uniformly continuous (and so, in particular if F is continuous
and periodic) then we can find a 9 of the type specified in Theorem 5.1 such
that sup, sup, |F(z + h) — F(z)|9(h)™! < 0.

If ¢(t) = tP, #(t) =t” then Theorems 5.1 to 5.3 can all be obtained in
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the manner of Section 4 by considering limits of iterations of the form

fa() = f(z) = Y (b= a)*Xa,(2) fa-1((z — 0)/(b - a))

[a,b)€F

for suitable f. However, if we allow more general 3 and ¢ then we can no
longer use similarity ideas and the proofs involve a vast amount of book
keeping. They are thus hard in the sense of being intricate though not in
the sense of involving new ideas. I suspect that few readers would have the
inclination or the patience to read the proof and that all of those few could
construct their own versions without much trouble. (If not I should be glad
to communicate the details.)

If the reader wishes to develop the ideas of this paper further it is possible
that one direction is indicated by the work of Rogers and Taylor described
in [8], Chapter 3, §3.

I should like to thank the referee for his comments.
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