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0. Introduction. The aim of this paper is to give a review of the
theory of topological fields and a bibliography of the relevant papers.
(All fields considered will be commutative.)

By a topological field we mean a field provided with a field topology,
i.e. a topology in which the field operations (z, y) >+, (2, y) — 2y and
z+>x~! are continuous. Moreover, in the case where the field topology is
non-discrete and non-trivial, we shall say that it is a proper field
topology.

The first modern approach to topological fields is due to Kiirschak [95]
who introduced axioms for normed fields giving thus a unified theory for
the real and complex numbers as well as for Hensel’s [55] p-adic numbers.
The next step has been made by several authors, who described the struc-
ture of normed fields (see [1]-[4], [64], [133]-[135], [149] and [160]).
Van Dantzig [22] found all locally compact fields under some superfluous
conditions (he assumed the second axiom of countability) and, independ-
ently, Pontriagin [138] described all locally compact and connected
fields. The next important step in this direction was done in a short but
very important paper of Safarevi¢ [157] who characterized fields with
a topology induced by a norm. He has introduced also the important
notion of a locally bounded field. Independently, this result was obtained
by Kaplansky [75] in a more general form. Moreover, Zelinsky [182]
gave a characterization of field topologies induced by a Krull valuation.
The first example of a topological field in which the topology cannot be
normed was given by Zelinsky [185].

Further investigators considered locally bounded fields (see [19],
[40], [76], [84], [122], [125], [129]-[131], [170] and [171]). In 1952,
Kowalsky [83] gave an elegant proof of the theorem of van Dantzig-
Pontriagin.

In the last years, the attention was concentrated mainly on the
locally unbounded fields and their properties (see [20], [38], [561], [56],
[72], [84], [122] and [125]).
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A complete description of all locally bounded field topologies was
found by Nakano [129] who showed that they are induced by generalized

valuations introduced by him.
We should mention also some papers with examples of connected

fields of non-zero characteristic (see [14], [123] and [125]).

1. Normed fields. A field K is said to be normed if there exists a func-
tion | |: K—R, called a norm (or real valuation), such that, for all z, ye K,

N,. || >0, || =0 if and only if # = 0;

N,. |zy| = |z|ly];

N;. le+yi < |2+ |yl

A norm is called non-Archimedean if it satisfies

N;. le+y| < max{|z|, |yl}.

The system of balls

U,={aecK: |a|]<e}, ¢ceR, e>0,

defines a field topology in K.

Now let us consider a more general situation. Let K be any topological
field provided with a topology . We write it, shortly, as (K,J). If 4
and B are any two subsets of K, then AB denotes the set of all products
ab, where ae A and be B. If A = K, then we say that A is bounded if, for
every neighbourhood U of zero, there exists another one V such that
AV < U. It is easy to see that this definition is equivalent to the follow-
wing: for every neighbourhood U of zero, there exists xe¢ K with 24 < U.
Let us remark that every compact set is bounded. Indeed, let A be compact.
The continuity of multiplication implies that, for every ze A, there exist
neighbourhoods U, and V, of # and of the zero-element, respectively,
with U,V, = U. Since A is compact, there exists a finite set «z,,...,2,
with U, vU,v...vU, > A. Taking

V=V,0V,n...0V,,

we have AV < U.
Now we list some properties of bounded sets:

(1) a subset of a bounded set is bounded;
(2) the closure of a bounded set is bounded;
(8) if A, B are bounded, then 4 +B, A UB and A-B, where

A-B =1 Mab;: a;ed, b;e B,n =1,2,3,...},

i=1

are bounded;
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(4) every convergent sequence (net) is bounded;

(5) if x,— 0 and (y,) is bounded, then z,y,— 0.

A topological field (K,J) provided with a proper topology is called
locally bounded if one of the following (equivalent) conditions is satisfied:

(B,) there exists a bounded and open subset 4 of K;

(B,) there exists a base of neighbourhoods of zero in K consisting
of bounded open sets;

(B;) for every bounded neighbourhood U of zero, the sets aU, ae K*
= K\{0}, form a base of neighbourhoods of zero in K;

(B,) the sets aR, ae K*, form a base of neighbourhoods of zero in K,
where R = K is a set such that 0,1¢ R, RR c R, there exists an aeR*
with a(R+R) < R, and K = R(R*)™! (see [27] and [29]).

Let now K be a non-Archimedean normed field. The set V = {xe K:
lz| < 1} is called the valuation ring, and P = {re K: |z| <1} — the va-
luation ideal. It is easy to see that P is the only maximal ideal of V. Thus
K = VP is a field which is called the residue-class field of our norm.
By the walue group we will mean the multiplicative subgroup |K*|
= {|z|e R: e K>} of the positive reals R _. A norm is called discrete if its
value group is a discrete subgroup of R_.

It is natural to ask the question, which field topologies can be induced
by a real norm. Before answering it, let us recall that a topological nilpotent
in a topological field (K,J) is any element xe¢ K for which z"—>0 for
n—>o0o. An element ae K is neutral if neither a nor a~' is a topological
nilpotent.

The following theorem was first proved by Safarevié [157]:

THEOREM 1. Let (K, 7)) be a topological field. Then the following condi-
tions are equivalent:

(1) J 148 induced by a morm;

(ii) the set T' of all topological nilpotents of K is open and (K\T)™!
18 bounded;

(iii) the set T is open and T U N is bounded, where N denotes the set
of all neutral elements of K.

If K is a normed field, then we may construct its completion K,
since K is a metric space. It is easy to see that K is a topological field.
Note, however, that if (K, 77) is an arbitrary topological field, then it may
happen that its completion K in 7 is not a field (see [20], [38], [70], [84],
[122] and [184]). It seems worth to notice that up to 1951 the only known
complete fields were normed (see [185]).

Now let us consider a problem of extending a norm from a subfield K
of L to L. If K is a complete normed field and L is its finite extension,
then the norm can be extended from K to L in a unique way. Indeed,
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it may be shown that if |#|gx and |#|; are norms in K and L, respectively,
then the norm in L is given by the formula (cf. [15] and [52])

lal, = |Nyg(a)l¥, where N =[L:K].

The converse implication — if a complete normed field L is an algebraic
extension of a complete normed field K, then the degrees of elements
of L over K are bounded — was proved in [75] and [133]. In particular,
if L is a separable extension of K, then [L: K] is finite. From Theorem 1
it follows, in particular, that |z -+iy| = (224 y?)"? is the only extension
of absolute value from R to C. A well-known theorem of Gelfand-Mazur
says that the complex-number field C is the only proper normed field
extension of the reals R (see [113] and [161]). The theorem is valid also
in the case of a pseudo-norm, i.e. where instead of |zy| = |z||y| only the
properties

leylp < lxiLlyl,  and  |relp = |r{|zly, 7R, x,yelL,

are assumed. On the other hand, if L is a finite extension of a normed
field K, not necessarily complete, then the norm of K can be extended
to a norm of L in finitely many non-equivalent ways, where any two
norms defining the same topology in L are said to be equivalent. More
details will be given in Chapter 3.

Now the question arises whether it is possible to describe all non-
equivalent norms of a given field K. In the case of the rational-number
field @ the answer is well known: the theorem of Ostrowski [134] states
that the p-adic norms and the ordinary absolute value exhaust all non-
equivalent and non-trivial norms of @. In the case of the rational-function
field K = k(x) with coefficients in %, every norm of K, which is trivial
on k, is equivalent to a norm of the form | |, or to a norm of the type | |,
where (cf. [181])

A AR L]
9 |

In the case of a finite extension K of the rational-number field @,
all norms are described as follows. The set Rx of all algebraic integers
of K is a Dedekind domain. In this case there is a one-to-one correspond-
ence between the non-zero prime ideals p of R and the non-equivalent
non-Archimedean norms of K. Indeed, fix an arbitrary prime ideal p
of Rg. Then

(@) = aRyx =p" [ [a™,  ngla)e N,

q#P
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where q runs over all prime ideals of Rg, and n,(a) # 0 only for a finite
number of ¢’s.
Now, if be K, b = ¢/d, where ¢, de R, then the formulae

lal, = ¢™™ for ae Ry and [b], = |c|,/ld],

define a non-Archimedean norm of K. If [K : Q] = n, then there are exactly n
embeddings of K into C, say, r, real embeddings and 2r, non-real ones,
n = r,+2r,. Let us take one embedding from every pair of the complex
conjugate and all real embeddings and denote them by g,,9s, ..., 9,
(r = r,+7ry). It is easy to see that every function |a|; = |g;(a)|, where |a|
is the absolute value in C, is a norm of K. It turns out that every norm
of K is equivalent to some of |a|; or to some p-adic norm |a|, (see [135]).
In other cases a description of all norms of a given field K seems rather
hopeless. It depends deeply upon the algebraic structure of K.

Let now K be an arbitrary normed field complete in a norm | |;, and
let | |, be any non-equivalent norm of K. Can the field K be complete also
in the norm | |;? An answer is contained in the following theorem going
back to Schmidt [156] (see also [26], [77] and [159]):

THEOREM 2. Let K be an arbitrary normed field complete in two inequiv-
alent norms. Then K i3 an algebraically closed field. Conversely, every
algebraically closed field K is complete in 2'X' inequivalent norms.

For example, in the case of the complex-number field, for an arbitrary
automorphism g of C, ge Aut(C), the formula |2], = |g(2)| gives a norm
of C. Different discontinuous automorphisms (i.e., other than identity
or conjugate) define inequivalent norms of C. Hence the cardinality of
such norms is equal to |Aut(C)| = 2°.

The following approximation theorem was proved by Artin and
Whaples (cf. [3] and [4]):

THEOREM 3. If there are given any n non-trivial, non-equivalent norms
| 1 of K, an element a, for each norm and an € > 0, then there is an element a
of K such that |a—ayl, <& for each s =1,2,...,n.

This theorem implies, in particular, that if J is the supremum of
a finite family of topologics induced by inequivalent norms of K, then

the completion K of K in  is the direct sum of the completions of K
in these norms.

The approximation theorem implies also at once that inequivalent
norms are multiplicatively independent:

If | |1y ] layeeey | |n are non-trivial and inequivalent, the relation
ky, K k
ey lels? . ey =1

18 true for all mon-zero xe K if and only if all k; = 0.
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This corollary allows an axiomatization of the valuation theory.
A set of all equivalent and non-trivial valuations of a field K is called
a prime divisor of K and is denoted by p, q etec.

Ax1oM 1. There is a set M of prime divisors and a fixed set of valua-
tions | |, one for each peM, such that, for every ae K, a # 0, |al, =1
for all but a finite number of pe IR and

”|a|,, =1.

peM

AxioMm 2. The set M of Axiom 1 contains at least one prime divisor g
of the two following types:

1. Discrete, with a finite residue-class field.

2. Archimedean, with a complete field K, (completion of K) which
is either the real- or the complex-number field.

It can be shown (see [3]) that if K is a field satisfying Axioms 1 and 2,
then it is an extension of a finite degree either of the rational-number
field @ or of the field of rational functions k¥ = ky(X).

2. Locally compact fields. We shall consider now some special classes
of normed fields. We have already shown that every locally compact field
is locally bounded. More is true, namely, every locally compact field is
a complete normed field. This can be deduced either from Theorem 1 or
using the existence and uniqueness of Haar measure in the additive
group K* of a locally compact field K. In fact, if x4 is the Haar measure
in K* and E < K+ is any open subset of K* with 0 < u(E) < oo, then
the function u,(E) = u(«zE) is also a Haar measure in K*, and so there
exists a constant, say |z|, such that

po(E) = lx|u(E) or |z = p(xE)/u(E).

It can be shown (cf. [167]; details in [37]) that, for some a > 0,
|z|* is a norm inducing the original locally compact topology in K.

In 1931, van Dantzig [22] introduced the general notion of a topolo-
gical field. He proved that if a proper locally compact field satisfies the
second axiom of countability and is connected, then it is isomorphic
either to the real- or to the complex-number field, and if it is completely
disconnected (note that any disconnected topological field must be com-
pletely disconnected (see [13])), then it is isomorphic to a finite extension
of &, where k is a p-adic number field or a Laurent series field k,{X)
over a finite field k,. Independently, Pontriagin [138] showed the validity
of this theorem in the connected case, but without conditions of count-
ability type. Jacobson [63] considered disconnected, non-commutative
locally compact topological fields and showed that they all have to be
division algebras of a finite degree over @, or k,{(X). Moreover, he proved
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that every disconnected locally compact division ring can be normed.
A general proof of the classification theorem for locally compact fields was
given by Kowalsky [83]in 1953. His proof is based on the existence of topolo-
gical nilpotents in a locally compact, non-discrete (hence non-compact)
field (see also [118] and [120]). A classification of locally compact
fields is given by the following

THEOREM 4. Let (K,J) be any proper topological field. Then K is
a finite extension of one of the following fields:

(1) the reals R,

(2) a p-adic number field Q,,,

(3) a formal Laurent series field ky(X)> over a finite field k,.

The generalizations of Theorem 4 will be given below.

Now, let K be any normed field, complete in a non-Archimedean
norm. Then, under suitable additional conditions, K is determined by its
residue-class field K. Let us recall that a field K is perfect if its charac-
teristic is zero or, in the case of characteristic p # 0, if K = K. Hasse
and Schmidt [54] have shown that if K is a perfect field, complete in
a discrete and non-Archimedean norm, then K is uniquely determined by
its residue-class field K, except the case where it has characteristic
zero, the characteristic of K equals p # 0 and K is ramified over @
(see also [104]).

Now we will consider a more general class of topological fields than
the normed fields, namely, fields with Krull-Schilling valuations.

3. The Krull-Schilling valuations. Let I" be any multiplicative ordered
group with added zero 0 such that 0-y = 9-0 =0 and 0 < y for every
ye I'. A function v: K—I"u{0} is called a valuation of the field K if the
following conditions are satisfied:

V. v(x) =0, v(z) = 0 if and only if x = 0;

Vs v(wy) = v(w)v(y);
V3. there exists a Ae I' such that

v(z+y) < Amax{v(z), v(y)} for all x,ye K.

(A valuation v is called non-Archimedean if A =1, where 1 is the unit
element of I.)

This notion has been introduced by Krull in his fundamental pa-
per [88]. A great number of results in this direction has been obtained
by Schilling, the author of monograph [155]. In the last years interesting
results were proved by Ribenboim [140]-[144].

A valuation v of a field defines a field topology in K: we take the sets
of the form U(y) = {xe K: v(x) < y}, ye I', as a base of the neighbour-
hoods of zero in K. Similarly as in the case of a non-Archimedean



126 W. WIESLAW

normed field, we define a valuation ring R, of v and a residue-class field K
of ». Let us start with examples (cf. [155]).

I Let K = k(X,,X,,...,X,) be a rational-function field of the
algebraically independent indeterminates X,, X,,..., X, with coeffi-
cients from a field k. At first, we shall consider a ring of all polynomials
R =k[X,,X,,...,X,] in the variables X,, X,,..., X,. We agree to
assign to the monomial X;'X,?... X, the value

VXX, L Xy =(e e, e e R

= {(ry; Tay...,7y): ;>0 for j =1,2,...,n,v;¢ R}.
Next, we define a multiplication in I" = R :
(P19 Tay ooy ) (815 82y vy 8p) = (7181, 7982y oo vy Sy).
We order n-tuples of positive reals lexicographically so that
(749 7oy eeey ) > (S1y Sy cvvy 8y)

if there exists a k, 0 <k < m, with ry, =8, for ¢t =1,2,...,k, rp, ) > 8-
Each polynomial f(X,, X,,..., X,) can be expressed as

f(Xyy ooy Xp) = X 1F(X,), where Fy(X,)e k[X,, ..., X,1[X,].

Let fo(Xs, ..., X,) = F(0) be a non-zero polynomial in X,, ..., X,.
In the same way we can write

fo(Xay ey Xp) = X, 2 Fo(Xy),
Whel'c Fz(,Xz)f k[.Xa’ ceey .Xn][X2] 3;Ild .11’2(0) ?l: 0.

Similarly, we can obtain the numbers msg, ..., m,. Let us put
o(f) = (e e e,

Since every element of K is of the form f/g, where f, ge R and g # O,
we can extend this definition of » to K by putting v(f/g) = v(f)v(g)™*
and »(0) = 0. It is easy to verify that v is a valuation in K and I" u {0}
is its value group.

II. Let k¥ be an arbitrary field and let I" be an arbitrary linearly
ordered group. Let us consider the set K of all formal sums

2 bagy Xo@

e<?

where o >t implies a(g) > a(7), byyek, with X°X? = X°** for all
a, Bel.

Next, we define addition and multiplication in K in the usual formal
fashion. It can be shown that we obtain again a field. Finally, we put
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v(b) = X°® for be K*, v(0) = 0. A simple calculation shows that v is
a valuation of K and its value group is order-isomorphic to I

This example shows that every linearly ordered abelian group can
be the value group of a suitably chosen valuation.

Now a question arises: which topological fields have valuations
preserving their topologies ?

The answer for non-Archimedean valuations was given by Zelin-
sky [182]:

THEOREM 5. Let (K, 7)) be a proper topological field. Then the following
conditions are equivalent:

(i) J 18 induced by a non-Archimedean valuation;

(ii) @ certain neighbourhood of zero generates an additive group which
is bounded and, for every subset A of K, disjoint with some neighbourhood
of zero, A~ is bounded;

(ii1) there is an open and bounded subring R of K containing 1 with K
as its field of fractions and such that, for every subset A of K, disjoint with
a certain neighbourhood of zero, A~' is bounded.

A multiplicative linearly ordered group I is called Archimedean if,
for every a, fe I' with a > 1, there exists an ne N such that o«" > 8. It
turns out (see [155]) that every linearly ordered Archimedean group is
order-isomorphic to a subgroup of the multiplicative group R, of positive
reals. Hence, any valuation taking values in an Archimedean ordered
group can be identified with a norm (real valuation).

If I' is any linearly ordered group, we define the absolute value |y}
in I" as y if y > e (e is the unit element of I'), ™' for y < ¢, and |0 = 0.
A subgroup 4 of I'is called isolated if A contains with 6 all elements ye I’
for which |y| < |d|. Since the set of all isolated subgroups 4 of I'y 4 # I,
is linearly ordered by inclusion, we can define the rank of I' as the order
type of the set of all isolated subgroups A4 of I'y 4 s I'. By the rank of
valuation v of a field K with the value group I' = v(K*) we will mean the
rank of I'y K* = K\{0}. We will consider now the problem of extension
of a given valuation from a field K to its finite extension. Let K be an arbi-
trary field and let L be its finite extension of degree [L: K] = n. Let v
be any valuation of K and v,, v,, ..., v, its inequivalent prolongations
to L. Denote by I' the value group of v and by I; the value groups of v;,
t=1,2,...,¢. Similarly, let ¥ and %; denote residue-class fields of »
and v;, respectively. Then g¢ is finite, [k;: k] < oo and I has a finite index
in each Iy, (I: I') < oo. If, moreover, f; = [k;: k], i.e., if the inertial
degree of v relatively to v; is f;, and e; = (I';: I') is the ramification index
of v, then

g

Ze,-f,— < n.

i=1
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Finally, if L is a Galois extension of K (i.e., L is a separable and
normal extension of K), then we have

g
n = pOZ&;f,-,

i=1
where p # 0 is the characteristic of K, 6 > 0, and

g
Z efi =mn
i=1
in the case of the zero characteristic (cf. [18]).

Most results on normed fields can be carried over to the fields with
valuations. As an example, let us consider a generalization of Theorem 3
given by Jaffard [67]:

THEOREM 6. Suppose that v,, vy, ..., v, are non-discrelte and pairwise
inequivalent valuations of a field K. If a,, a,y, ..., a,¢ K* and b,, by, ..., b,
€ K are arbitrary, then there exists an xe K such that v,(x —b;) = v;(a;) for
all 1 =1,2,...,n.

To finish this chapter we present some generalizations of Theorem 2.
Let K be a field with valuation v. Let R, be its valuation ring and P,
the only prime ideal of R,, i.e., the ideal of the valuation v. The field K
is called henselian (or relatively complete) if the Hensel lemma is true in K
for v, namely, if, for every polynomial f(X)e R,[X] such that

F(X) = go(X)ho(X) (modP,), (go(X), ho(X)) =1 (modP,),
there exist ¢g(X), h(X)e R,[X] such that

f(X) = g(X)h(X)
with
gd(X) = go(X) (modP,) and h(X) = ho(X) (modP,).

Every field K, complete with respect to the rank one of valuation v,
is henselian, but not conversely (see [147] and [155]). A field K is hen-
selian with respect to the valuation v if and only if v has exactly one pro-
longation to every algebraic extension of K.

The following generalization of Schmidt’s theorem, given in [26],
holds:

THEOREM 7. A field K is relatively complete with respect to two inequiv-
alent valuations if and only if it is separably algebraically closed in its comple-
tion (see also [77] and [159]).

It can be proved that if an algebraic closure K of a field K is its finite

extension, then K is henselian with respect to v if and only if its residue-
class field K is a really closed field (see [26]).
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4. Pseudo-valuations. Semi-valuations. A further generalization of
the notion of a norm is the notion of a pseudo-valuation (or a pseudo-
norm). The pseudo-valuations were introduced and examined in a series
of Mahler’s papers [109].

A pseudo-valuation (or a pseudo-norm) on a field K is defined as a real-
valued function p: K—R_ such that

P,. p(2) >0, p(0) =0, p #0;

Py. p(ay) < p(@)p(¥);

Py. p(@—y) <p(@)+p(y)

A pseudo-valuation p is non- Archimedean if it satisfies the ultrametric
inequality

P;. p(z—y) < max{p(x), p(y)}.

It is not difficult to see that x s 0 implies p(x) # 0. In fact, the set
I ={xeK: p(x) = 0} is an ideal in K, and since p = 0 on K, we have
I = (0); thus p(x) = 0 implies z = 0.

Similarly, as in the case of normed fields, two pseudo-valuations p,
and p, are called equivalent, p, ~ p,, if they define the same topology
on K. Let us call a topology 4 on K a PV-topology if it can be defined by
a pseudo-valuation.

The question arises what are the necessary and sufficient conditions
for the field topology 4 of K to be induced by a pseudo-valuation. The
answer is given by the following theorem of Cohn [19]:

THEOREM 8. Let (K, ) be a proper topological field. Then the following
conditions are equivalent:

(i) 7 is a PV-topology;

(ii) K contains a non-empty open bounded set and there exists a non-zero
nilpotent element in K;

(iii) K has a mon-empty bounded set consisting of nilpotents.

Moreover, a topology I can be induced by a non-Archimedean pseudo-
valuation if and only if K has a non-emply open bounded subset closed under
addition and containing nilpotent elements only.

The proofs are based on the notion of a gauge set. A subset 4 of K
will be called a gauge set of K if —1¢ A, AA < A, there exists a ce K such
that A + A = cA, A # K, and there exists 2 de K* with

Ud"4 =K.
n=1

There is a one-to-one correspondence betwecen the set of all gauge
sets on K and all pseudo-valuations on K. A subset B of K is said to be
linear if, given we K*, either ¢ B or 7 '¢ B. It turns out that a non-

9 — Colloquium Mathematicum XXIX.1
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trivial pseudo-valuation p on a field K is equivalent to a valuation if and
only if it is associated with a linear gauge set (see [19]). If K is a non-
discrete pseudo-normed field of characteristic zero and p is its pseudo-
norm such that p(z) = |z| for every z¢ @, then K is algebraically isomorphic
to a subfield of the complex-number field C (see [7] and [8]). The last
assertionremains valid if p(x) = |z| holds for infinitely many natural numbers
xe N or if p(x) = |2| for all z with |z| < J, § > 0 (see [10]).

If K is a pseudo-valued field for which there exists a number n, > 1,
nee N, with p(n?) = p(n)2 for all n > ny, p(n,) >1, then there is a con-
tinuous embedding of K into C. A pseudo-valuation p on K is said to be
multiplication monotone if p(x) < p(2’) and p(y) < p(y’) imply p(xy)
< p(2'y’). It can be shown that a multiplication monotone pseudo-norm
of a field K is equivalent to a norm (see [9]).

Successive generalizations of the norm of a field lead to concepts
of semi-valuation and half-valuation. It was done, among others, by
Fuchs [45] and Jaffard [66]-[68].

Let I' be a partially ordered, multiplicatively written commutative
group. By a half-valuation we will mean any mapping v: K*—I" such that

V. v(ab) = v(a)v(d);

V,. v(a) > v(c) and v(b) > v(c) implies v(a—b) > v(c);

V;. v(K*) = T.

Let us recall that a partially ordered commutative group is called
a lattice-ordered group or l-group if, for every a, fe I', there exist

sup{a, f} =avp and inf{a,B} =anp, where a<p,

if and only if avpg =8 (aA B = a).
A semi-valuation s on a field K is a mapping s: K*—I', where I is
an l-group, such that

S;. 8(ab) = s(a)s(d);
S,. 8(a-+0b) > inf{s(a), s(b)};
S;. $(K*) =1T.

It can be proved that every abelian I-group is a semi-valuation group
of some field [66].

We call a set 2 of positive elements in I'" an upper class of I if, for
every ae 2, a < f implies fe 2 and if, moreover, 2 is a sublattice of I
We shall call an upper class Q2 of I'" an Il-closed upper class if it contains
the greatest lower bound to every set of any two elements in Q. By an
order of a semi-valuation 8 we mean the number of maximal I-closed upper
classes of its value group. We shall say that a semi-valuation is of the
first kind if its order is finite. If 8 is of order one, then it is a valuation.
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Yakabe [179] is the author of the following extension theorem:

THEOREM 9. If k is a subfield of a field K, then any semi-valuation s
of the first kind and of order n on k can be extended to a semi-valuation of the
first kind of K and of the same order n. In particular, if K is a finite
extension of k, then the number of distinct extensions of s in K, which are
of order m, i8 finite and not greater than d", where d is the degree of sepa-
rability of K over k.

5. Topologies of type V. In paper [75] Kaplansky introduced a notion
of rings of type V. Let (K,.J) be any topological field. We shall say that
a subset A = K is bounded away from zero if it is disjoint with some neigh-
bourhood of zero. The topology I is of type V if, for every subset A of K,
bounded away from zero, 4! is bounded. It can be shown that the comple-

tion K of a topological field K of type V is again a field (and of type V).
We are going to characterize the topologies of type V. Before doing it
let us recall some definitions.

Let (K, 7 k) be any topological field and let J be an arbitrary topo-
logy on K. The topology  on K is said to be admissible with respect to T g
if K endowed with J is a topological vector space over K provided with I ¢;
this means that the mapping from J xJ to J defined by (z, y)—>z+y
is continuous, and that the mapping from J x X7 to J defined by (z, ¥)
>y is also continuous. This implies that J < J . A topological field
K is said to be minimal (or full) if its topology J x is a minimal element
in the ordered set of all field topologies on K ; that is, if there exists no
field topology 4 on K such that J < J g. The topological field (K, )
is called strictly minimal if there exists no topology 4 on K admissible
with respect to J x and such that J < Jg; this means that the only
topology on K admissible with respect to J ¢ is J .

It is not difficult to see that topologies induced by the valuations
and topologies of type V are minimal. We shall say that the topological
field (K, x) is an absolutely simple field if every continuous non-zero
homomorphism of it is a topological isomorphism. Some results in papers
[40], [84] and [126] can be put together as follows:

THEOREM 10. If (K, J) is a topological field, then the following condi-
tions are equivalent:

(i) 7 v8 a minimal topology;

(ii) the field (K, J) is absolutely simple;

(iii) the completion K of K in a topology I is a field.

Every strictly minimal topological field is minimal [127]. It can be
proved that every field provided with a topology induced by a non-trivial
valuation is strictly minimal.
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In [127] it is proved the following

THEOREM 11. Let (K,J ) be a topological field. Then the following
conditions are equivalent:

(i) every finite-dimensional vector space over K has only one admissible
topology ;

(ii) every automorphism of any finite-dimensional topological wvector
space over K is continuous;

(ili) K s a strictly minimal and complete field.

In order to finish this chapter let us recall the following character-
ization of topologies of type V given by Fleischer (cf. [39] and [40]) and
Diirbaum and Kowalsky (cf. [29]):

THEOREM 12. Let (K, ") be a proper topological field. Then the following
conditions are equivalent:
(i) 7 1is of type V;
(ii) for every subsets A and B of K, if A and B are bounded away
from zero, then also AB is bounded away from zero;
(iii) 7 is a minimal locally bounded field topology;
(iv)  is induced by a Krull valuation in K.

The topologies of type V have many interesting properties. For
instance, if (K,.7) is a topological field of characteristic not equal 2,
and if P(X) =X2+aX+beK[X], where ab 0, then P(X) has
a continuous branch of the inverse function if and only if J is of type V.
Moreover, if J is not of type V, then there exist topological fields for
which the square-root function is discontinuous at every non-zero point [80].

The notion of a topology of type V plays an important role in the
theory of topological fields. For any topological field (K,J ), we write
G(K) for the group of all its continuous automorphisms. The locally com-
pact fields of characteristic zero can be described in terms of locally
bounded topologies [171]:

THEOREM 13. Let (K, J) be a proper topological field. Then the follow-
ing conditions are equivalent:

(i) K is a locally bounded, complete field and, for every closed subfield F
of K, G(F) is finite;

(ii) K 28 a locally compact field of characteristic zero;

(iii) K s a finite extension of the reals R or of some p-adic number
field @, with the usual locally compact topology.

For further generalizations of this theorem (for all locally compact
fields), see [172].

6. The generalized valuations. A characterization of the locally bound-
ed field topologies. The final step in a description of all locally bounded
field topologies was made by Nakano in 1960 (see [129]-[131]). He intro-
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duced the notion of a generalized valuation which generalizes all known
types of valuations, semi-valuations, norms etc. All locally bounded field
topologies can be described in terms of generalized valuations. At
first, some definitions. By a wvalue group of a gemeralized valuation or,
simply, by a v-group we shall mean a set 2 such that

G,. 2 is a multiplicative group and 1 is its unit element;

G,. in X, there is defined an associative and commutative addition
(a, ) —>a+B;

G;. a(f+y) = af+ay and (a+p)y = ay+ fy for every a, ff, ye 2.

Let K be a field and let X be a v-group. A function || ||: K—2% assign-
ing to every element xe K a subset |z|| of 2 is called a generalized valua-
tion if the following conditions are satisfied for all z, ye K:

GV;,. |lz|| = 2 if and only if 2 = 0;

GV.. llzll +llyll = llz+yll;

GVs. izl llyll = lleyll-

Every generalized valuation induces a field topology on K, since
all sets

U, ={xeK: oelx||+ 2}, o€,

form a base of neighbourhoods of zero in K.
The main result of Nakano (see [129]) is the following

THEOREM 14. For every topological field (K, J), the following conditions
are equivalent:

(1) 7 is a locally bounded topology ;
(ii) I s induced by a suitable generalized valuation.

Now, let 2;, i¢ I, be a family of »-groups and let 2 be the direct
produect of all 2;. If addition and multiplication are defined componentwise,
2 becomes a v-group. If 2; are I-groups for all but a finite number of
indices, then we may consider the restricted direct product Z* consisting
of all elements of 2 such that all but a finite number of components are
identities of Z;’s. ¥ is also a v-group. It can be shown that every locally
bounded field topology is induced by a generalized valuation which takes
values in the restricted direct product of the v-groups X; = Z and X,
= R, [130]. Moreover, if I is infinite, then every restricted direct product.
of 2, (X; = Z or R,) is the value group of some generalized valuation. If
I is finite, a generalized valuation takes values in R, i.e. it induces the
same topology as a suitable pseudo-norm.

7. Connected fields. Topological characterizations of R and C. As
stated in chapter 2, the real- and complex-number fields are the only
locally compact connected fields [138]. Dieudonné [25] gave an example
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of a connected subfield of C different from R and C, and Kapuano [78]
has proved the existence of a one-dimensional subfield L of C, L +# R. This
furnishes a counter-example to a conjecture of Baer and Hasse [13] that
R is the only one-dimensional subfield of C. In connection with the
theorem of Pontriagin it is worth noticing that the following theorem
remains true (see [125] and [170]):

THEOREM 15. Ewvery locally bounded complete and connected field is
topologically isomorphic either to R or to C.

A field topology is called locally convex if there exists a base of
neighbourhoods of zero consisting of convex sets, i.e. a base such that,
for every neighbourhood U of zero and for every =,

U+U+...4U0 =n-U = {nu: ue U}.
n times

It can be shown that every locally convex complete and connected
field is topologically isomorphic either to R or to C (see [112]). Mutylin
[122] has given a generalization of the Mazur-Gelfand theorem: R and C
are the only locally bounded extensions of R.

The complex-number field can be characterized also in the following
way (see [168] and [170]):

THEOREM 16. Let (K, ) be a proper topological field. Then the follow-
ing conditions are equivalent:

(i) K 18 topologically isomorphic to the complex-number field C;

(ii) K 48 a locally bounded complete and algebraically - closed field
with G (K) torsion and non-trivial;

(iii) K 48 a locally bounded complete and algebraically closed field with
G (K) finite and non-trivial.

Moreover, Knopfmacher and Sinclair [82] showed recently that C
and the real closed subfields A4 of C with 4 (i) = C are the only normed
fields having a finite number of non-isomorphic extensions. This theorem
remains valid also for fields with valuations [173].

In a natural way, the problem arises whether there are any connected
fields of non-zero characteristic. Such examples were given by Mutylin
(see [123] and [125]), Waterman and Bergmann (see [14]). They have
shown that every discrete field can be embedded in a connected field
in a suitably chosen topology. Indeed, let k be a field of arbitrary charac-
teristic. Let us consider the ring R of polynomials in uncountably many
variables T,, i.e., B =k[{T}econl To =0, T, =1, topologized by
taking the sets U,, ee R, ¢ >0,

U = U(Tal—Tpl7 AR Tan_Tﬂn)7
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where the sum is taken over all sequences

Uyy ooy Guy Bry ey Bue(0,1)  with Do, —fil <
T

for a base of zero-neighbourhoods in R. (Here (x,, «,, ..., #,) denotes the
ideal in R generated by z,, x,, ..., 2,.) Then the function
|f| = infe
feU,g

defines a metric d(f, g) = |f—g¢| in R, invariant under translations. It
can be shown that the field of fractions of R, say K, becomes a connected
field in a topology defined by a metric extending the metric d(f, g) of B
(see [14]). Examples given by Mutylin are similar.

8. Topologies on the rational-number field (. Generalizations. It
seems to be a hopeless but very interesting question to describe all the
field topologies of a given field K in terms of its algebraic structure.

At first, let us start with the rationals @. A classical theorem of
Ostrowski [134] states that the ordinary absolute value and the p-adic
norms are the only norms of @ (up to equivalency). Similarly, it can be
proved that every locally bounded minimal field topology of @ is induced
by a norm [122]. Kowalsky [84] was the first who has given an example
of a locally unbounded topology on . Before showing his example let
us recall some definitions.

Let A be a family of field topologies of K,

?I :{'7_1:: iEI}-

Let J be an arbitrary subset of I. A topology 7, is called the inter-

section topology of I, where je J,
Ts=MN7T i
jeJ
if 7 ; is induced on K by the sets of the form (M)’ U;, where Uj; is a neigh-
bourhood of zero in a topology ; and ()’ means that U; = K for all but
a finite number of j’s. It is not difficult to show that (K, ) is a topolo-
gical field [38]. Let now B be a family of all locally bounded field topo-
logies of K. It turns out that, for J;¢B, where je J,
-7,] == m ij %,
jedJ

if and only if J is finite [84]. This theorem assures the existence of locally
unbounded field topologies of @. Indeed, let P = {p,, p;, ...} be the set
of all primes, and let us take an arbitrary infinite subset J of N. Denoting
by J; a suitable p;-adic topology on @, one can see that 7 ; is not locally
bounded. Mutylin [122] gave other examples of locally unbounded
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field topologies in @ such that Q’s are fields, contrary to examples of
Kowalsky, and, moreover, there is at least continuum of such topologies
on §. Let p,, p,, ... be any sequence of prime numbers. Mutylin constructs
a topology J on @ satisfying some special conditions and requiring that
p,—>0 in the topology . It is sufficient to take the sets

O .k,
U, = 2 " ke Z, s, N,

r

r—n
K Gy 18] < 2° }

r

for a base of neighbourhoods of zero for 7. Here all but a finite number
of k, are equal zero and a,,’s satisfy certain conditions. For similar results,
see [79].

Now let us consider a more general situation. Let 4 be a principal
ideal domain and P a representative system of the irreducible elements
of A. Denote by K the field of fractions of 4 and let 7, be a p-adic topology
on K. Then the following theorem holds [20]:

THEOREM 17. If (K,J) is a proper topological field, then the open
A-submodules of K form a fundamental system of meighbourhoods of zero
if and only if there exists a subset J of P such that I = T 4, i.e. if

T =NTp
ped

In particular, K = @ for A = Z and thus we can describe all field
topologies 7 of @ for which the additive subgroups of  are neighbourhoods
of zero in . This theorem remains valid if we take a Dedekind integral
domain A4 instead of a principal ideal domain, as shown by Jebli [70]
and, independently, by myself in my doctoral dissertation in 1971. It
would be interesting to describe other classes of integral domains having

similar properties.

9. Locally unbounded field topologies. The first example of such
a topology gave Zelinsky [185]. In his example the topology was minimal.
Another example was provided by Gould [51]. He topologized the rational-
function field R(z) of an indeterminate # over the reals in a suitable way,
but his example can be extended to an arbitrary rational-function field
k(x), where k is a proper locally bounded topological field (cf. [36], II).
At first, the sets

UGe) = {f(@)e R[2]: f(2) = 3 a,2" ¥ laly < &0},

n=0

where ¢ = (¢,) is any sequence of positive real numbers, ¢,— 0, are taken
as a base of the neighbourhoods of zero for some ring topology of R[z].



Then the sets of the form

Ule
Ve, g) = 20

= 1100 where g¢(z)e R[z],

define a locally unbounded field topology for R(x) (see [51]).

Many results on locally unbounded field topologies can be found
in Mutylin [125]. We present here some of them. It was shown by several
authors (see [56] and [174]) that there are complete and locally unbounded
extensions of fields R, C, of a discrete field and of locally unbounded
fields. It still remains an open problem if there exists a complete locally
unbounded extension of the p-adic number field @,. Our knowledge of
locally unbounded fields is rather scarce. So far there is no classification
of such fields even in the most simple case such as the rational-number
field @. Recently, interesting results obtained Heine (cf. [D], [E] and
[F]) and Podewski (¢f. [J] and [K]).

10. Final remarks. Open problems. In connection with the results
mentioned in Chapter 7, the following questions arise:

1. Are R and C the only complete and connected fields ¢ (P 880)

2. Are R and C the only complete and connected fields with finite
number of their continuous automorphisms? (P 881)

3. Is C the only non-discrete complete and algebraically closed field
with finite number of continuous automorphisms? (P 882)

4. Does the approximation theorem of Artin-Whaples remain true
if we take the minimal topologies instead of the locally bounded and
minimal ones (i.e. valuations), that is, if, for any two minimal topolo-
gies 7, #.J, of a field K and for any neighbourhoods U, and U, of
zero (respectively, in J, and J,), there is

(Ui+a))n(Uz+ay) #9

-

for any a,, ase K. (P 883)

Obviously, this conjecture is not right in the case of non-minimal
field topologies. Indeed, taking 7, =9 ,NnT,and I, = F ,NT 4, Where
P, ¢, ¢’ are different primes in Z, and 7, denotes the p-adic topology, one
easily sees that (U,+a,)N(U;+a,) = for suitably chosen U,, U,,
a1y Ay.

5. Is Theorem 2 true for arbitrary minimal topologies, i.e., can
a non-algebraically closed field be complete in two non-equivalent and
non-discrete topologies? (P 884)

The positive answer to this question would imply that of 3 even under
a weaker assumption that G(K) is a non-discrete torsion group (cf. [170]).
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6. Does there exist a complete and locally unbounded extension of

the p-adic number field @,? (See [125].)

7. Are the locally compact fields of characteristic zero the only

locally bounded and complete fields with a finite G(K)? (See [171].)
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