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OVER-RINGS OF AN (HNP)-RING

BY

SURJEET SINGH (KUWAIT)

Let R be an (hnp)-ring and S be an over-ring of R. First of all the
structure of idempotent ideals is studied. The results so proved are used to
prove the followings. (i) If R has enough invertible ideals, so does $
have. (i) For any idempotent ideal A of S, A "R is an idempotent ideal
of R.

In a recent paper Goodearl and Warfield ([5]) discussed in details the
problem of extension of simple modules by simple modules over an (bnp)-
ring, and they obtained a periodicity theorem ([5, Theorem 20]). In this note
the results of Goodearl and Warfield are used to determine the structure of
idempotent ideals of an (hnp)-ring R, and the results stated above.

1. Preliminaries. For basic properties of (hnp)-rings and modules over
such rings, we refer to [2], [3]. Let R be an (hnp)-ring and Q be its classical
quotient ring. For any ideal B of R, let

0,(B) = {qeQ: gB < B}, 0,(B)={qeQ: Bq < B}.

A finite sequence M,, M,,..., M, of distinct idempotent maximal ideals of R
is called a cycle of length n, if n > 1, 0,(M;) = 0,(M;, ) for 1 <i<n—1, and
0,(M,) = 0,(M,) ([3]). Intersection of a cycle in R is a maximal invertible
ideal, and any maximal invertible ideal, which is not a maximal ideal, is an
intersection of a cycle of idempotent maximal ideals in R. To avoid a trivial
situation, by a cycle (of maximal ideals) in R, we shall understand a cycle of
idempotent maximal ideals, or a singleton set {M!}, where M is an invertible
maximal ideal of R. For any module Mg, d(Mpg) will denote its composition
length, and for any subset X of M, anng(X) (or simply ann(X)) will denote
the annihilator of X in R. For a maximal invertible ideal A of R, a module
My is said to be A-primary, if for each xe M, xA* = 0, for some k. For any
non-zero ideal B of R, R/B is a generalized uniserial ring ([1]). For any

module M over a ring S, Eg(M) (or simply E(M)) will denote its injective
hull.
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2. Idempotent ideals. Throughout R is an (hnp)-ring. A finite sequence
M, M,,...,M, of distinct idempotent maximal ideals of R is called a
subcycle if 0,(M;) = 0,(M;,,), for 1 <i<k-—1, but it is not a cycle.

LEMMA 1. Let M,, M,,..., M, be a finite sequence of distinct idempotent
maximal ideals of R, such that O0,(M;) = 0,(M;,,) for 1 <i<k—1. Then
R/M M, _, ... M, has homogeneous right socle, and for some uniserial right
R-module uR of length k, ann(uR) = M M, _, ... M,. Further for any minimal
right ideal I of RIM\M,_, ... M,, IM, =0.

Proof. By Goodearl and Warfield ([S, Lemma 18]) there exists a
uniserial module ¥R with composition series
0=X0<X1 <X2... <X,‘=uR

such that ann(X,;/X;_,)=M,;, 1 <i<k.

Let B = ann(uR). Since R/B is a generalized uniserial ring and uR is a
faithful uniserial R/B-module, R/B must have homogeneous right socle and
any minimal right ideal I of R/B is isomorphic to X,;. So IM; = 0. Clearly
M, M,_, ... M, < B. We write

t
R/Mle-l e Ml = @Z e"R,
i=1

where R = R/M,M,_, ... M,, and ¢; are orthogonal, primitive idempotents
in R. If f; is the natural image of ¢; in R/B, then f; are all orthogonal
primitive idempotents in R/B. Now f;(R/B) is embeddable in uR and hence
Jfi(R/B) x X, for some !> 1. Then f,(R/B)M; = f,(R/B) for all j>1I So
Si(R/IBIM M, _, ... M,y = fi(R/B).
Then also
e,-RM,‘M,‘_l “ee Ml+l =e,-§.

If MyM,,, ... M, # B, then for some i,
d(e; R) > d(f;(R/B)).
However f;(R/B) ~ X, gives
d(f;(R/B)) = 1.

Notice that for any uniserial R-module yR and any non-zero maximal ideal
M of R, either yM = yR or yM is the unique maximal submodule of yR.
Thus

(e RMMy_; ... My = (e (M My _, ... My, )(M;M,_, ... M)
=(e,~R)M,M,-1 ces Ml
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gives
d[(eRAM,M,_,...M,]>d(e;R)—1>0.
But RM,M,_, ... M, =0, gives
e RM;M,_,...M, =0.
This is a contradiction. Hence the result follows. O

LEmMMA 2. For any subcycle M, M,,....M, in R, B=MM,_, ... M,
is an idempotent ideal, and

B=(Ml ann e th)h¢(M1 anﬁ e an)k_l.

Proof. Since M,, M,,...,M, do not contain a cycle, by [3,
Proposition (4.5)], A=(M,"M,n ... nM)* is an idempotent ideal.
Clearly A = B. Consider any uniserial summand eR of R = R/A. Let its
composition series be

eR=X,>X,_;>...>X,=0.
For some j, ann(X,) = M;. By [5, Theorem 8],
O, (anng (X)) = O,(anng (X ,/X,)).

So that anng(X,/X;) = M;,,. Continuing we get anng(X,/X,_,) = M;,,_,,
and hence eRM,M,_, ... M, = 0. So that

B < anng(R) = A.

This proves that 4 = B. Further as in Lemma 1 there exists a uniserial R-
module ¥R with composition series

uR=Y,>Y_;>...>Y%=0
such that M; = anng(Y/Y;_,).

For C=M,nM,n...nM,, we have Y,_; =uC’, 1<i<k. Thus
uRC*~ ! # 0. Consequently

B=(M1 ('\sz\ cee an)k¢(Ml ann ces ka)k_l. D

Definition 3. An idempotent ideal of the form M, M,_, ... M,,
where M, M,,..., M, is a subcycle in R, is called an sc-idempotent ideal in R
given by subcycle M,, M,,..., M,.

LeMMA 4. Let M and N be two distinct idempotent maximal ideals of R
such that 0,(M) # O;(N), O,(N) # 0,(M). Then
MN=NM=MnN,

Proof. For any two simple R-modules S and T, with SM =0 = TN the
hypothesis give Ext!(S, T) = 0 = Ext!(T, S) (See [5, Theorem 8]). Thus
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RAM N)* which is a generalized uniserial ring, must be a direct sum of two
primary rings. So its maximal ideals M = M/M N N)>, N = N/(M n N)?
commute. This gives MN=NM =NnM. O

LemMMA 5. Let M, M,,...,M, and N,, N,,..., N, be two disjoint sub-
cycles in R, such that O,(M,) # O(N,) and O,(N,) # O,(M,). Then the sc-
idempotent ideals B=MM,_, ... M,, C = N;N,_, ... N, commute and are
comaximal.

Proof. The hypothesis yields O,(M;) # O,(N;) and O,(N;) # 0,(M,) for
all i, j. So by Lemma 4, M; N; = N; M;. Consequently BC = CB. O

Let now A be any non-zero idempotent ideal of R. Let .# be the family
of those maximal ideals that contain 4. Then # is a finite family and its
members are idempotents. If .# has k members, say M,, M,,..., M,, by [3,

k
Proposition (4.5)], A =( (N M,f. For any M, Ne #, put M ~ N if and only
i=1

if there exist members M = N,, N,,...,N,= N of # such that either
N{,N,,....N, is a subcycle or N,, N,_,,..., N, is a subcycle. This is an
equivalence relation on %#. The members of an equivalence class can be
arranged into a subcycle, so they determine an sc-idempotent ideal. By
Lemma 5, such sc-idempotent ideals commute and are pairwise comaximal.
Then appealing to Lemma 2 and [3, Proposition (4.5)] we get A is the
product of the sc-idempotent ideals determined by the equivalence classes in
#. This all gives the following.

THEOREM 6. Let A be a non-zero idempotent ideal of an (hnp)-ring R. Let
B,, B,,..., B, be the sc-idempotent ideals determined by maximal subcycle of
idempotent maximals ideals containing A and t be the largest of lengths of such
subcycles. Further let M,, M,,...,M, be the totality of maximal ideals
containing A. Then

A =Bl Bz ...BS=(M| (.\sz-\... ﬁM,)'
#M,AM,n..."nM)~ 1

3. Over-rings. Let R be an (hnp)-ring and Q be its classical quotient
ring. Any subring S of Q containing R is called an over-ring of R. Let X be a
collection of maximal right ideals of R. Let &y be the set of all those
essential right ideals I of R, for which R/I has no composition factor
isomorphic to any of the modules R/M, where M€ X. This ¥y is an additive
topology on R, which determines a hereditary torsion theory on R with
corresponding quotient ring

Ry = {xeQ: xI = R for some e ¥y}

Ry is called a localization of R at X ([4, p. 138]). Goodearl ([4, Theorem 5))
showed that every over-ring of R is of the type Ry. Any simple Ry-module is
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of the type Ry/KRy, KeX ([4, Theorem 5]). We shall use the above
notations in succeeding results without comments. To avoid the trivial case,
we assume that an over-ring S does not equal Q.

LeMMA 7. For any right ideal A of an over-ring S of an (hnp)-ring R, A
=(ANR)S.

Proof. Now S = Ry. Consider xe A. For some Ie.¥y, xI < R. Then
I*={yeQ: yl < R} < Ry,.

As Ig is projective, 1elI*. Consequently xexII* < (A N R)S. This proves
that A =(ANR)S. M

LemMA 8. Consider any non-faithful simple Ry-module Ry/KRy with
M = anng, (Rx/KRy). Then there exists a subcycle (or cycle) of maximal
ideals P,, P,,...,P, in R such that P, =anng(R/K), P,P,_,... P,
= anng(Rx/KRy), Rx/KRy is a uniserial R-module and
M =(P,P,_, ... P))Ry.

Proof. Since R/K is embeddable in Ry/KRy as an essential R-
submodule ([4, Theorem 2]), Ry/KRy is a uniform R-module. Further M # 0
gives M N R # 0. Consequently Ry/KRy is a uniform non-faithful R-module,
and it is uniserial as R-module. Let its composition series as R-module be

RX/KRX=X‘ >Xl—l > ... >Xl >X0 =0.

Let P; =anng(X,;/X;_4), 1 <i<t. Then P, = anng(R/K). As seen in the
proof of [4, Theorem 3] R/K is .¥x-torsionfree, but X,/X, is ¥x-torsion.
Consequently because of periodicity theorem, no two P;’s can be equal. By
Lemma 1, |

anng(Ry/KRy) = P,P,_, ... P,.
Then Lemma 7 yields,
M =(P‘P.'_l coo Pl)RX' O

THEOREM 9. Let M be a non-zero maximal ideal of an over-ring Ry of an
(hnp)-ring R, and Ry/KRy be a simple Ry-module with M = anng, (Rx/KRy)
and P = anng(R/K). Then M belongs to a cycle of maximal ideals in Ry if and
only if P belongs to a cycle of maximal ideals in R.

Proof. Consider E = Ex(R/K). As R/K is ¥x-torsionfree, E is also
injective as Ry-module, by [7, Lemma (2.6), p. 202] and Ry/KRy is embed-
dable in E as Ry-module. Let M = M, M,,..., M, be a cycle in Ry. By [5,
Lemma 18], E has a uniserial Ry-submodule uRy of length t+1, such that
for its composition series

uRy=Y,,>Y%,>...>Y,>Y,=0,
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Ml'=annRx(Yi/Y;—l)9 1 glst,
M; = anng,(Y,,/Y).

Then uRy being also non-faithful, uniform R-module, is uniserial as R-
module. Further Y,,,/Y, 2 Y, as Ry-modules, give Y,.,/Y, and Y; have
isomorphic R-socles. This gives uRyx have some isomorphic R-composition
factors. Consequently P = anng(R/K) belongs to a cycle in R. Conversely let
P belong to a cycle in R. Then any proper R-submodule of E is uniserial.
Consequently every proper Ry-submodule of E is also uniserial and non-
faithful. Since (Ry/KRy)/(R/K) is &x-torsion, using the periodicity theorem,
we get E is of infinite length as Ry-module, and hence by [S5, Theorem 20],
M belongs to a cycle in Ry. O

Similar arguments also give the following.

THEOREM 10. Let a prime ideal P of an (hnp)-ring R belong to a cycle
in R. For any over-ring Ry of R, either PRy =S or for some KeX,
P = ann(R/K), with M = anng, (Ry/KRy) a maximal ideal belonging a cycle
in S.

THEOREM 11. Any over-ring of an (hnp)-ring R with enough invertible
ideals, has enough invertible ideals.

Proof. Let S =Ry be any over-ring of R. Let M be any non-zero
idempotent, maximal ideal of S. Let Ry/KRy be a simple Ry-module with M
= anng, (Rx/KRy). Let P = anng(R/K). Since R has enough invertible ideals,
P belongs to a cycle in R ([3, Corollary (4.7)]). Consequently by Theorem 8,
M belongs to a cycle in S, and hence by [3, Corollary (4.7)], S has enough
invertible ideals. O

LEMMA 12. Let M, M,,..., M, be a subcycle (cycle) of maximal ideals in
an over-ring S of an (hnp)-ring R. There exists a subcycle (cycle)
Ny, N,,..., N, of maximal ideals in R and positive integers 1 =k, <k, < ...
oo <kg <u with

My =(Nyy-1 ... N1)S, My =(Ngy-1 ... Ni,))S, ...,
M, =(N,N,—y ... N,)S.
Further M\M,_, ... M,nR=N,N,_, ... N;.
Proof. There exists a uniserial Ry-module Y with composition series
Y=Y>Y_>...>Y =0

with M; = ann(Y;/Y._,) ([5, Lemma 18]). By Lemma 8, annR(Yi/Y,-_;) # (0).
So that Y is a non-faithful R-module and hence YR being uniform yields Y is
a uniserial R-module of length say u. Let

Y=X,>X,_.;,>...>X,=0
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be the R-composition series of Y and N; = ann(X;/X;_,), 1 <i < u. Let for
some v, w, Il <v<w<u N,=N,,.

Now, S = Ry, and socleg(Y;/Y; ) are Fx-torsionfree and any proper R-
homomorphic image of Y;/Y,_, is &x-torsion. So there exists j > k, such that

socleg (Y;/Y;_ ) = socle(Y/Y,_ ).

This yields M; = M,. This is a contradiction. Hence N, N,,..., N, are all
distinct: Consequently either u = 1 or N; are idempotent ideals, and O,(N;)
=0;(N;+4). If u=1, then t =1. It can be easily seen, by following the
arguments in Theorem 9 that M;, M,,..., M, is a cycle if and only if
N,, N,,...,N, is a cycle. This proves the lemma. O

The above lemma gives the following.

CoROLLARY 13. Let M be a simple module over an (hnp)-ring R, such that
P = anng (M) is an invertible maximal ideal in R. Then for any over-ring S of
R, either M ®xS =0 or (M®S)g = My.

Let A be an idempotent non-zero ideal in an (hnp)-ring R. Eisenbud and
Robson ([3, Proposition (1.8)]) showed that B < BA, B being an idempotent
ideal of 0,(A) is a one-to-one correspondence between idempotent ideals of
0,(A) and those idempotent ideals of R that are contained in 4. The next
theorem shows that for any overring S of R, there is a one-to-one cor-
respondence between idempotent ideals of S, and certain family of idempo-
tent ideals of R.

THEOREM 14. For any idempotent ideal A of an over-ring S of an (hnp)-
ring R, ANR is an idempotent ideal of R.

Proof. It follows from Lemma 12 that if 4 is an sc-idempotent ideal of
S, then A N R is an sc-idempotent ideal of R. In general let 4 be a non-zero
idempotent ideal of S. By Theorem 6, A = B, B, ... B, for some mutually
commuting pairwise co-maximal sc-idempotent ideals B; of S, such that the
subcycles determining these B;’s are pairwise disjoint, and union of no two
of these subcycles is a subcycle. By Lemma 12, B; n R is an sc-idempotent ideal
of R. It can be easily seen that the subcycles determining these idempotent
ideals B; " R are also pairwise disjoint, and union of no two such subcycles
is a subcycle. Consequently B; "R are pairwise comaximal and they
mutually commute. Hence [] (B; " R) is an idempotent ideal of R. Clearly

AnR=(]B)nR=(NB)nR=N(B;nR) =[] (B,nR).

This proves the theorem. [

Since an (hnp)-ring R is a Dedekind prime ring if and only if R has no

idempotent ideal ([3, Theorem (1.2)]) the above theorem immediately gives
the following well-known result.
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COROLLARY 15. Any over-ring of a Dedekind prime ring is a Dedekind
prime ring.

Remark. The correspondence given by Theorem 14, does not extend
that given by Eisenbud and Robson ([3, Proposition (1.8)]).
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