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HOMOGENEOUS SUPERASSOCIATIVE SYSTEMS
BY

H. LANGER (VIENNA)

The notion of homogeneity was introduced by Marczewski in [4].
Homogeneous algebras are exactly those algebras whose automorphism
group is the whole symmetric group. Ganter et al. have proved that all
the non-trivial homogeneous algebras are simple with one single exception
{cf. [2]). In the following we shall investigate homogeneity within the
variety of superassociative systems. These systems are quite natural
generalizations of semigroups. A superassociative system is an algebra
with one (n-+1)-ary operation (n > 1) satisfying some law which in
case n = 1 reduces to the well-known associative law. Superassociativity
turns out to be the essential property of composition of functions since
for superassociative systems there holds some sort of Cayley-representa-
tion theorem generalizing that one valid for semigroups. The concept of
superassociativity has its origin in works of Menger (cf. [6] and [6]).
In [1] Dicker proved that any superassociative system can be embedded
into the full function algebra over some suitable set, a result which was
proved in a more general version by Nobauer in [7]. Some material con-
cerning superassociative systems can also be found in a book by Lausch
and Nobauer (cf. [3], Chapter 3). Qur aim in this note is to give a classifi-
cation of all homogeneous superassociative operations on some fixed set.

In the sequel let A be some fixed set.

Definition 1. Let n be some positive integer and let fe 44",
The operation f is called homogeneous if

9 (@oy + .-y Ty) = f(g0y -y gTy)

for any 2, ..., 7, € A and for any g eSym A (i.e. symmetric group over A).
The operation f is called superassociative if

f(f(wo: coey Bp)y Dppygeedy wzn)

=f(“’o:f(wu D1y eoey Tag)y ooy J(@py Bpgrs oeey a’zn))

for any «,, ..., ,, € A.



56 H., LANGER

In the following let % be some fixed positive integer and let f be some
fixed (»-+1)-ary homogeneous superassociative operation on A.

LEMMA 1. Assume that aqy ...,a, € A and f(@gy ..., 8,) 7 Gy -y Gy
Then .

A = {8y ..., 84y f(@, ..., a,)}.

Proof. Suppose that 4 +# {a,, ..., a,, f(ae, ..., a,)}. Let

acAN\{ay, ..., a,,f(aq, ..., 6,)}
and put

g:=1(a f(ag, ..., a,)).
Then
a = gf(aoy .., a;) = f(gay ..., ga,) = f(ay, ..., a,) # a,
a contradiction.
LEMMA 2. f(@,...,2) = for any x e A.
Proof. Suppose there exist some a € A such that f(a,...,a) #a.
Then A = {a, f(a, ..., a)} by Lemma 1. Put g:= (& f(a,...,a)). Then
f(fa,...,a),a,...,a) #gf(f(a,...,a),a,...,a)
=f(¢f(a, ..., a), ga, ..., ga) = f(a, f(a, ..., 8), ..., f(a, ..., a))
=f(f(ay...,a),4a,...,a),
a contradiction.

LEMMA 3. Assume that agy...,a,c A and f(ayy ..., a,) # 6. Then
f@,yy...,9) =y for any z,y € A.

Proof. Let a,be A. ¥ @ = b, then f(a,bd,...,d) =f(b,...,0) =Db
by Lemma 2. Now assume that & # b. Let g e Sym 4 be such that ga, = a
and gf(aq, ..., ,) = b. Then, using Lemma 2, one obtains

f(a, b,...,b) =f(g“o’ 9f (@gy ooy @y)y ony Gf(Ggy ..oy an))
= gf (@) f(@oy ++es Bu)y -+ o3 [0y ooy By))
= gf(f(a'or ceey Bg)y Gryenny a») = gf (@gy ...y @) = b.
Hence, in any case, f(a,b,...,b) = b. This completes the proof of
the lemma.
Definition 2. For any (ay,...,a,) € A" define f, . €4* by

fal....,a,,a" 1= f(@, @1y ..., a)
for any x € A.



HOMOGENEOUS SYSTIMS 57

LEMMA 4. Assume that ay, ..., 8, € A,letgeSymA andputh:=f, ., .
Then

(*) fgal,...,gan = ghg—l
and
(**) fhaal,...,haan = hghg—l .

The proof is trivial.
LemMMmA 5. Assume that a,, ..., a,€ A. Then

fal.....an =1, or Ifal,...,an-AI =1.

Proof. We use induction on n. From Lemma 3 it follows that Lemma &
is true for » = 1. Now let » > 1 and assume that Lemma 5 has already
been proved for n —1 instead of n. Put

B:={a),...,a,} and h:=f, ..

Suppose b # 1, and |hd| #1. £ b,,...,b, € 4 and |{b,, ..., b,}| <m,
say b, = b,, and if one defines f, € A4" by

Ji(@oy eovy @pyy) := f(@gy ooy Tyyy 74)

for any @,...,%,_, €A, then f; is homogcneous and superassociative
and

fbl.....b,,‘” = 1(® b1y .oy byy)

for any xeA, whence, by induction hypothesis, f, . ., =14 or
|foy,...,4] = 1. Hence, whenever b,, ..., b, € A are such that |{by, ..., b}
<m, then f, ., =140r |fy, 5, 4] =1. Therefore, |B| <n would imply
h =1, or |hA| =1 both contradicting our assumption. Hence |B| = n.
Now h eSymA would imply

h = hh-lhhh.l =fhh“lal.....hh_la,, h-l = hh—l = 14

(by (%%)) contradicting our assumption. Hence » ¢ SymA. If |AB| < n,
then, because of * = fu,,,....na, (DY (##)), We have h* =1, or |B*A} =1,
the first being impossible since h ¢ Sym A. Hence, if |hB| < n, then |A*A]
= 1. Now let g e SymA be such that

(i) gr e ™ {w}nB if both x e h4d and b~ {z}NnB #* G;

(i) gz e A~ {w} if both zehd and A~'{g}nB =B;

(iii) gB = B if both h™' {g}nB # B for any 2 e hANB and b~ {z}n B
=@ for any « € hA\B.

Then hgh = h. If |hgB| < m, then, because of

hg™! = hghg™' = foga,,....r0a,
(by (*+)), we would have hg~' =1, or |hg~'A| = 1, the first implying
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4h =geSymA and the second implying |h4| =1, both being a con-
‘tradiction. Hence |hgB| = n. Now we consider the following cases:

Case 1. hB< B and h™'{z}nB # O for any z e hANB.

Then h~'{z}NnB =@ for any z e hAN\B and, therefore, gB = B,
“whence ¢g|B € Sym B. Since hB < B and |hB| = |hgB| = n = |B|, we have
-hB = B, whence h|B € Sym B. Now .

h|B = hghg™'g|B = faga,,...na,9|B = hg|B = (hgh|B)(h|B)™’
= (k| B)(k|B)™ =1p

{by (*=)). Since & # 1, there exists some a € A such that ha # a. Because
<of h|B = 15 we have a € ANB. Let b € B\{ha} and put

g.:=(a ha b) and gg:=(ha b).
Then
b = hglhg;lha =fhalal,...,lpalanh’a’ =f0201.....02¢nha' = gshgsha = ha #b

by (**) and (*)), a contradiction.

Case 2. hB < B and there exists some # € h4A N B such that A~! {z}n B

= 0.
Let ¢ € hAN B be such that A~! {c}nB = @. Then hB = B\{c} and,
‘therefore, |hB| < n, whence |h*4| =1. Let d e h™'{c}. Then d e A\B.
If ee ANB and g, e SymA are such that g;| B = 15 and g;d = ¢, then

he = f(e, @1y ..., 8,) = f(9:8, g3, ..., §a,) = af(d, @y, ..., &,)
= gshd = gsc = c.
Hence A(A\B) = {c}. Now
.n—1 = |hgB|—1< |hA|—1 = |hBUR(A\B)|—1< [hB|< |B\ {¢}| = n—1,

-whence |hB| = |B\{¢}| which together with hB < B\{¢} implies hB
= B\{c}. Now we conclude

n = |B\{c}|+1 = |hB|+1 = |h(RBUK(A\B))|+1
= |[W* (BU(A\B))|+1 = |B*4]|+1 = 2.
Put g, := (¢ d). Then
hc =fh04al.hﬂ4¢lzc = hg4hg‘c =¢

(by (**)), whence ¢ € i~{c}nB = @, a contradiction.
Case 3. hB ¢ B.
Then there exists some ¢, € B such that he, e ANB. We have

f(ey, @qy...,a,) = he, #e,,a,,...,a,,
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whence A = BuU{he;} by Lemma 1. Therefore, |4] =n-+1. Since
h¢SymA, we have |hA|<n = |hgB|< |hA|, whence |h4d| =n. Thus
|4] =n+1 and |hA| = n together imply [hd|—1 < |h(h4)|. Now sup-
pose that |hB| < n. Then |h*A| = 1 and, therefore,

2<n = hA| < |W*A|+1 =2,

whence » = 2. Hence |hB| = 1 and, therefore, kB = {he,}. Now we con-

clude

whence |{he,, h*e¢,}| = 2. Hence h’e, € A\{he,} = B. But now

1 = |B*A| = |h* BUR{he,}| = [h(hB)Uh{h*e,}| = |h{he,}U{he,}|
— |h{he,}URB| = [hA] = 2 #1,

a contradiction. Therefore, |hB| = n, whence h|B = g~'| B. Now wo
conclude

A =g'A =g 'Bug'{he,} = hBU{g ' hgg'e,}

S hAv {fy"lal,...,a—lang—lel} = hAv {fhal....,ha,,g—lel}
=hAu{k*g e} chAdc A

(by (*) and (**)), whence hA = A which together with |4]| = n -1 implies
h e Sym A, a contradiction.

Hence, in any of the three cases we obtain a contradiction. Therefore,
h =1, or |hA| = 1. Applying induction argument completes the proof
of the lemma.

THEOREM. Let A be some set, let n be some positive integer, and let f be
some (n-+1)-ary homogeneous (not mecessarily superassoctative) operation
on A. Then the following conditions are equivalent:

(i) f 78 superassociative.

(i) (A) or (B):

(A) f(zoy ...y &,) = @9 for any ..., 2, € A.

(B) (a)-(c):

(a) If )y ..., x, € A and |{®y, ..., x,}| =1, then f(z, 2,y ...,2,) = o,
Jor any z € A.

(b) If @yy...,0, €4, |{Z1y...,2,}| >1 and |{m,...,5,}|+1 * |4],
then (a) or (B): |

() f(x, 21y ..., @,) =z for any x € A.

(B) There exists some integer ©, 1 < ¢ < m, such that f(x, 24, ..., 2,) = @,
Jor any xz € A.

(©) If @yy...,28p€d, |{&),...,7}|>1 and [{z,, ..., z,}|+1 = |4],
then () or (B) or (y):
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(y) For any x € A the element f(x,x,,...,x,) 18 the unique element
of AN{&y,...,2,}.

Proof. Without loss of genecrality, |4| > 1. First assume (i). Suppose
that (A) does not hold. Then (a) holds because of Lemma 3. Now let.
%y, ..., &, € A and suppose that neither («) nor (B) holds. Then [{z,, ..., z,}}
> 1 by Lemma 3. Because of Lemma 5 there exists some a € A\ {x,, ..., 2.}
such that f(x, z,,...,,) = @& for any x € A. Hence f(z,, 2, ..., ®,) = a,
and thus A = {a, x,,...,x,} by Lemma 1. Therefore, |{z,,...,2,}|+1
= |A|, whence (y). Hence (B) holds, and thus (ii) is proved. Since it is
easy to see that (ii) implies (i), the proof of the theorem is completed.
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