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A TYPICAL PROPERTY
OF THE SYMMETRIC DIFFERENTIAL QUOTIENT

BY

JIRI MATOUSEK (PRAGUE)

Let R denote the set of all real numbers, I the interval [0, 1], C = C(I) the
space of all continuous functions on I with the supremum metric, and |M| the
outer Lebesgue measure of a set M < R. Let

D(M) = limsup (M n(—h, h)|/2h)
h—0

be the upper density of M at the point 0. For feC, xel, KeR put
S,(x, K) = {h; (f (x+h)—f (x—h))/2h > K}.

Evans (') constructed an f e C such that f has the approximate upper
symmetric derivative + oo and the approximate lower symmetric derivative
— o0 at every point xe(0, 1), and he proved that the set of such functions is
comeager in C. In fact, his f has

D(S,(x,K)>1/26 and D(R\S,(x,~K)) > 1/26

for all x and arbitrarily large K. We strengthen his result as follows:
THEOREM. Let F be the set aof all functions feC such that

D(S,(x, K)) = 1 = D(R\S(x, —K))

for all xe(0, 1) and arbitrarily large K. Then F is comeager in C.

The Evans construction (op. cit.) starts with a function composed of
4 linear segments. We have to use more complex functions; we obtain them by
using finite sequences of 0’s and 1’s with certain properties.

For easier formulation we shall treat the finite sequences of 0’s and 1’s as
words over the alphabet {0, 1}. For a word w let n(w) denote the number of
symbols of w, and w[i] its i-th symbol. The concatenation of words w and v is
denoted by wo,

w* = ww...w (k times)

(") M. ). Evans, On continuous functions and the approximate symmetric derivative, Colloq.
Math. 31 (1974), pp. 129-136.
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and w® is composed of the symbols of w in the reversed order. Let 0 stand also
for the word with a single symbol 0; similarly for 1. For h, i natural numbers,
1<i—h+1<i+h < n(w), we put

d, (i, h) = caqrd({je{l, 2,...,h}; wli—j+1] =1 and w[i+j] = 0})/h.
LEMMA 1. Let ¢ > 0. There exists a word w = w(e) such that
wll]=1, w[nw)]=0,
and for each ie{l, 2,..., n(w)—1} there exists h(i) with
1<i—h@)+1<i+h@<nw) and d,(i, h()) <e.

Proof. Let k, m be fixed natural numbers; their values will be specified
later. We define a sequence of words wy, w,,... and a sequence of natural
numbers a,, a,,... as follows:

k —_
w°=1, ao—l,

wirr = W0 w;,  aj.q=n(w)+a,
We put w = w, 0",
We find the h(i) for each i. Only the case w[i] = 1, w[i+ 1] = O requires
discussion (otherwise d,,(i, 1) = 0). Denote by z(i) the maximal number with the

property
wli+1]=wl[i+2]=...=w[i+2z()] =0.
We distinguish two cases:

(i) The number z(i) equals a; for some je{0, 1,..., m—1}. One can see
from the construction of the word w that each. maximal segment of zeros of
length a; is preceded and followed by the word w;. By induction we get
w§ = w;, and the recurrence relation for w; gives

wilp+a;]l=w;[p] for p=1,2,...,n(w)—a,
Combining these observations, we get ‘
wli+p]l =wli—p+1] for p=a;+1,..., n(w). \
Thus

dw(i, n(Wj))~< aj/n(wj) = (n(Wj_1)+a]- 1)/((k+ 1).n(Wj... 1)+k'a]_ 1) < l/k
(for j = 0 use directly a, = 1, n(w,) = k), which can be made less than ¢ by
choosing k suitably.

(ii) If the case (i) does not occur, then necessarily i = n(w,,) and z(i) = n(w,,).

We put h(}) = n(w,); the required inequality for d(i, h(})) is proved by
estimating the number of ones in w. Let r; denote the number of ones in w;
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divided by n(w;). We compute
ro=1,
riv1 = (k+1)r;n(w;)/n(w;.y)
=r;(k+1)nw)/((k+)nw)+k-a)
=r;-(1+(k/(k+1))-a;/n(w))" !,
and since ay/n(w)) > 1/(k+1), we have the estimation
d, (i, n(w,)) =r, <(1+k/(k+1)*)~™.

Choosing m sufficiently large, we get r,, < & Thus Lemma 1 is proved.
For a function f: - R,apointxandh > 0,0 < x—h < x+h < 1, we put
de(x, ) =0, ) {t>0; f(x—1) > f(x+)}I/h.

LEMMA 2. For every ¢ > 0 there exist a continuous function ¢: I -1 and
hy > O satisfying

(i ¢=1 on [0, hy] and ¢ =0 on [1—h,, 1];

(ii) for every x € [hy, 1—h,] there exists he [hy, 1/2] such that d (x, h) < &.

Proof. Let w = w(g/4) be the word from Lemma 1 and let N = n(w). Let
us define a function y: I- {0, 1} by

Y(x)=w[i] for xe[(i—1)/N,iN), i=1,2,...,N,
and
Y1) =
Put h, = 1/8N2. We show that for every xe[ho, 1—h,] there exists h(x)
€[hy, 1/2] with
d,(x, h(x)) < ¢/2.
This already proves the lemma, since if we choose ¢ to be a continuous
function from I to I such that
M={tel; o) # ¥} < [ho, 1—hy] and M| < sho/4,

then d,(x, h(x)) < ¢ for every x and (i) is also satisfied.

Let D={i/N; i=1,2,..., N—1}. For xeD Lemma 1 guarantees the
existence of h(x)e [1/N, 1/2] with d,(x, h(x)) < &/4. The function y'(x) = y(x +6)
and the function y differ on a set of measure at most 2N|é|. If x,eD and
|x—xo| < hg, then

|dw(xo’ h(x,))— d,,(x h(xo))l
< [{te(=h(xo) h(xe)); W(xo+1) # W(x+0}|/h(xo) < 2Nho-N < /4,

so it suffices to put h(x) = h(x,). On the other hand, if a point x has distance at
least ho from the set D, then ¥ is constant in the hy-neighborhood of x and
(x ho) =
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Proof of Theorem. Put
N, ={feC;3xe(0, 1), 3IK: D(S;(x, K)) < 1};
we prove that N, is meager in C. Analogously one proves that
N, ={feC;3xe(0, 1), IK: D(R\S,(x, —K)) < 1}
is also meager, and so is C\F = N, UN,.
Put
Q,={feC;Vxe[l/n,1-1/n], Vhe(0, 1/n):
IS;(x, W) " (—=h, h)|/2h < 1—1/n};
then

N, = Uz 0,
(indeed, if feN,, then there exist x€(0, 1), K, ¢ >0 and h > 0 such that
IS,(x, K)n(—t, 1)/2t <1—¢ for every te(0, h);
so choose
n > max(K, 1/e, 1/h, 1/x, 1/(1—x));
then feQ,).

We claim that each Q, is nowhere dense in C for n > 2. To this end we
show that for every fe C and r > 0 there exist a function geC and 6 > 0 so
that the ball B(g, d) is contained in B(f, r) and B(g, ) » Q, = @. It suffices to
take the f°s to be polynomials (since they are dense in C), and hence Lipschitz.

Let feC, r <1 be fixed, and let L be the Lipschitz constant for f. Let
¢ and h, be as in Lemma 2 for ¢ = 1/2n. Put K =n+L+1 and p = r/2K and
define the function

g I1-[-r/2, r/2]
as follows:
o(x) =ro(x/p)/2+Kx—r/2 for xe[O0, p)

and o is periodic on I with a period p. Then it is easy to verify that o is
continuous and for every xe[p, 1 —p] there exists h(x)e[p-hy, p] with

(= (), h(x)) A S,(x, K)|/2h(x) > 1 —1/2n.
Now put g = f+0 and & = p-hy/2n.

Let
g,€B(g,9), xe[l/n,1—1/n]<[p,1-p].
If heS,(x, K), |h| = 5, then
(91(x+h)—g,(x—h))/2h = (f (x+ h)—f (x—h))/2h
+(0(x+h)—o(x—h)/2h+((g,(x +h)—g(x+h))
—(9,1(x—h)—g(x—h)))/2h
> —2Lh/2h+ K —26/2h > K—L—1 =n;
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hence S,(x, K)\(—4, ) = §,,(x, n), and thus
(= h(x), h(x)) N S, (x, n)|/2h(x)
= [(—h(0), —8) L (6, h(x) N S, (x, K)|/2h(x)
2 (I(=h(x), h(x)) N S,(x, K)|—28)/2h(x)
> 1—1/2n—8/(p-ho) = 1—1/n.

We have proved that g, does not belong to Q,, and so Q, is nowhere
dense.
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