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Let R, C and H denote fields of reals, complex numbers and quater-
nions, respectively. We consider the multiplicative group on C x H which
acts on Hi := HXH\{(0,0)} by the rule

(1) (CxH)xHe - Hi, ((2,h), (s, 2*) — (22'h, 22°h).

Denote by N the space of orbits of Hz under this action. N is a basic
space which we shall provide with a hyperbolic metric. It is known that
the hyperbolic stereometry can be considered as the Riemannian geom-
etry with the basic manifold R := {(«', 2?, 2°) | #* > 0} and with the
fundamental metric form

K
as* |21, 42, 23) = & ((ds")? + (da?)? + (da®)?).

We are going to obtain this metric and some other properties of the
hyperbolic space by considering N as a base of a certain Klein space.
An analogical treatment has been performed in a 2-dimensional case and
resulted in a brief and consequent system of analytical geometry of the
Lobachevski plane ([2], cf. also [4]).

I. THE FUNDAMENTAL GROUP

1. ProrosITION. The space N is a compact 3-dimensional manifold
with a boundary.

Proof. Orbits of the action
H xH; - H*[(a, (¢', o*)) > (3" a, &*a)
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are points of the projective space over H, denoted by PH (cf. [1]). This
space can be covered by two charts defined by mappings

p: {2y @'} > 2l (@)™ and  pe: {o', o'} o 2P (2)7,

where {«', 2’} denotes an image of (', 2*) under the canonical projections
H: —> PH. The real dimension of PH is 4. Thus N can be viewed as the
space of orbits in PH under the action

C xPH — PH [ (2, {a', a§}) > {ea", 20%}.
We have
pifea', 2w’y = 2(p{a’, 2*})e™, 4 =1,2.

We shall see what are orbits in H under the action a — zaz~', where
ze¢ C and ae H. For that purpose write a in the form ¢ = a’ + a'’j, where
a’ and &'’ are complex numbers and j is the third unity in H. Note that
this decomposition can be obtained as follows:

1 S . 1 . . .
(2) a’ =—2-(a+'m(—z)), a =?(a—w(—z))(—-,7)-
Thus
zaz~! = zaZ|2|™* = &' +exp(i2argz)a’’j.

Since a’ and |a’’| are invariant, we can define mappings m, and m,
as follows: if (2', 2*)e H and a® # 0, then

(3) p{a', @*} = @l(a®)™ =W +1"j, where h',h"C.
‘We put
my(p (o', %)) = (reh’, imh’, |"']),

where p denotes the canonical projection of H: onto N. Thus the values
of m; lie in clR? . Similarly, we define

my: {p(a', o*)|2' # 0} - clRY,
where

p(@, a*) > (ve (ug(a', 2%)), im (uy (@', 22Y), | pa(a, 2*)"l),

and uy(—) = pus(—) + p( —)" is a decomposition analogous to (3).

'We see that N can be covered by two local charts, m, and m, being
the corresponding mappings. The boundary of N is {p (2, #*)|2* (#*)~* e C} U
U {cc}. This completes the proof.

2. Note that N is homeomorphic to a manifold the points of which
are circles in the C-plane, including circles with radius equal to 0 and oc.
These singular circles constitute the boundary.
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Denote by L the group of non-singular complex 2 x2-matrices.
We map L onto a transformation group 7 which acts on N as follows:

(4) if @ = [a]; o1, 2¢ L and u = p(a', 2*)e N, then
T,U = p(ay &' + ey 2®, ai ' + ot a?).

Observe that 7, does not depend on the choice of the initial point
(«', #*) on the orbit . Thus (4) defines the action correctly and we denote
by T the image of L by =. ‘

We have 7, = 7, if and only if b = Aa for some 0 % 1e C. This implies
the following

3. PROPOSITION. T is tsomorphic to the group of complex 2 X 2-matrices
with the determinant equal to 1. The real dimension of T is 6.

4. THEOREM. Let ¢ denote the point in N with the m,-coordinates (0, 0, 1).
Then a stationary subgroup 8 = T of ¢ consists of the matrices of the form

a b
[-5 2]
such that aa +bb = 1.
Proof. Consider the equation (aj+b)(¢j +d)~* = j and split it into
the ' and ' parts according to (3). We obtain ¢ = —b and d = a@. Then
we normalize the obtained matrices according to proposition 3.

Let us denote by A the closure of the set {ueN| u,(uw) = (0,0, ?)}.
Denote by T, the stationary group of A.

5. THEOREM. T, consists of the matrices of the form

Ta o0 0 a
[0 1/a] or [—l/a O]’ where ac R.

The proof is analogous to that of theorem 4.

6. PROPOSITION. The group S is isomorphic to the group of rotations of
the Euclidean 3-dimensional space.

This fact can be proved by checking that the Lie algebras of both
groups are isomorphic.

7. LEMMA. Let h = h'+h""je H be such that B’ %0 and b’ #1.
Then there exist two complex numbers g, and g, and two complex singular
mairices G, and G, such that

(1)-19.] # 1, 1¢19:| = 1, and arg g, = arg g, = arg b';

(ii) each G, sends h to g, and j to itself for v =1, 2.
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Proof. In view of theorem 4, we have to find g, and the required
matrices from the equation

a(W +h"§)+b = gj(—b(h +1"j)+a).

After performing some simple calculations and splitting both member:
into their ' and '’ parts, we obtain the following system of equationss

hWa+(1—gh”’)b =0, (b —g)a+gh'b =0.

Its determinant must be 0 and for ¢ we have the equation

(B) —h'F+A+ME BB )g—h" =0

which can be written in the form

(6) (y+y™)/2 = L+EW +E1")[(2]1")),

where y = gexp(—7argh’’). Since y is real and it satisfies the equation
(7) ch(logy) = (1+ |hI)/(2|h"']),

there exist two distinet roots of equation (5), namely g, = y,¢ and
gs = 746, where a = argh’’. These roots yield the two matrices

gvﬁl gv_h” _
[Tb"—g, g,h, ] (1’ —172)
which satisfy (ii).

8. THEOREM. For any two poinis u, veint N, there exist two elements
a, and ay in T such that each a, sends u to p(j, 1) and v to p(g,j, 1), where
g, are complex and |g,gs| = 1.

Proof. Write u =p('w'.+'w”j, 1). Then the matrix

sends » to p(j,1). We choose an h such that a,v = p(h, 1) and apply
lemma 7. This implies the existence of G, and G, which send a,% to itself
and a,v to p(g,j, 1) (or, respectively, to p(g,j, 1)), where g, and g, satisfy
the conditions of the theorem. Then we put ¢, = G,0a, and a, = G,0a,.

9. PROPOSITION. The stationary group of the pair (p(4, 1), 2(g§, 1),
where 1 = ge O, i8 represented by matrices of the form

et 0
0 e

The action of this group can be expressed also by

P(h,1) > p(e™he”, 1).
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This proposition can be easily obtained by lemma 7. The same lemma
allows us to prove the following

10. ProPOSITION. The group T acts transitively on a bundle of direc-
tions on N.

L4

II. THE CROSS-RATIO AND THE METRIO IN N

We recall that A is the orbit of the point p(j, 1) under the action of
the group of matrices of the form

Vs 0

o 1/Vs|’
where s varies in the half-line of positive numbers (cf. theorem 5). We
observe that these matrices constitute a connected component of 7.

However, T, contains another topologically connected component to
which matrices of the form

0 —Vs

Vs 0

belong. Each such matrix can be represented as a product

[0 -1| [Vs o
1 ol o —1ps|

An action of the first matrix of this decomposition is nothing but
a change of orientation on N. More precisely, it sends p(j, 0) to p(0, j)
and vice versa. '

Then we can define the cross-ratio on int N which is invariant
under 7,. We denote by (u, v;r, q) the value of the cross-ratio of the
quadruple (v, v,7,q). If v = p(a;j,1), v = p(asj,1), r = p(f.j, 1) and
q = p(B:j,1), then we have

(%, 03 7, q) = a1—.31/a1—132

ag—pP1/ az—P, )

We extend this function onto cl4 by continuity. In particular, we
have

(8) (u1v;p(071)7p(170)) = a,/a,.
Thus we obtain

11. ProPosSITION. We have
('u’ v; p(0,1), p(1, O))(’U, w; p(0,1), p(1, 0)) = (u’ w; p(0,1), p(1, 0))

9 — Colloquium Mathematicum XXXII.2
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and, if v lies between u and w, then

|10g('“’7 v; p(0,1), p(1, 0))] +|10g(”7 w; p(0,1), p(1, 0))'
= Ilog(“y w; p(0,1), p(1, 0))'

Now we are able to define a metric in N.

12. Definition. We say that three distinct points in N are N-col-
linear if there exists te ' which maps these three points to points of A.
The N-line through points # and » is the set of points which are collinear
with % and ».

13. ProPOSITION. Every N-line is a curve in N. Its boundary consists
of two points in the boundary of N.

14. Definition. Fix a positive real K. We define a T-invariant
distance 6 in N as follows. If 4 and v are distinct points in int N, then we
choose ae¢ T such that au = p(j,1) and av = p(gj, 1), where ge C, and
we set

6(u, v) := K|loglgl|.

In view of sections 8 and 9, the function ¢ is uniquely determined.
We have to express it in m,-coordinates. If v = p(¢, 1) and » = p(h, 1),
then we construct a transformation a according to the proof of theo-
rem 8. Then we use formula (5) and theorem 8. After some calculations
we obtain

9) ch(K~'8(u, v) = (If — WP+ 1f"1F+ B 12)] 12" B"|.

This formula implies immediately &(u,v) = d(v, »). Additivity of
é on any N-line follows from proposition 9.

15. THEOREM. The infinitesimal form of the metric 6 is
2 'K2 142 2 3\2
(10) ds .p(l?, I & W((d‘” ) +(d972) -l—(dw ) )7

where x* =reh’, x® =imh’, x® = |A"|.

Proof. Consider a curve which is parametrized by the mapping
t—p(h+iz,1). Let X be a 1-jet of this mapping, its source being 0.
Thus X is a vector which is tangent to N at v = p(h,1). We have to
calculate the norm |X| of X, which is induced by 6. We have

o1
| X| =135376(p<h+tm, 1), p(h, 1)).
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After some elementary calculations we obtain

2

|hlllz

1X| = ((rea’)* + (ima')* + |a"' %)
which is consistent with (9). So the following theorem is a corollary to
the just obtained formulas:

16. THEOREM. 6 i8 a hyperbolic distance.

II1I. FINAL REMARKS

Let us denote by B the boundary of N. This boundary is homeo-
morphic to the complex projective line (which is isomorphic to the real
Moebius sphere). Each N-line has exactly two points in common with B.
These are the so-called infinite points of the line. Conversely, each pair
of distinct points on B determines exactly one N-line.

The group T acts as a group of projective transformations. The
proper and improper circles in B are traces of N-planes according to the
following definition:

17. Definition. A subset IT — N is called an N-plane if there exists
ae T which maps I7 to

II, =cl{we N |w = p(h,1), where imh’ = 0}.
Thus each N-plane is a 2-dimensional submanifold of N.

18. THEOREM. For any N-lines a and B with the unique point of coinci-
dence ve Int N, there exists a unique N-plane X such that a = 2 and < 2.

Proof. By theorem 8, there exists ae¢ T which sends a to 4. Let 2,
and 2z, be the infinite points of the N-line af. Apply proposition 9 and
perform a transformation r such that r4 = 4 and imz, =imz, = 0.
Hence roa sends a and B into A. Thus a~'or~'4 is the N-plane through
a and B.

The following two theorems [are easy to prove.

19. THEOREM. The stationary subgroup T, of II, consists of those trans-
formations which have real matrices and determinanis equal to 1.

20. THEOREM. If we restrict the Klein space (N, T) to (II,, T,), then
we obtain the plane hyperbolic geomelry.

Let a and § be two N-lines as in theorem 18. We denote by z,, 2,
and s,, s,, respectively, pairs of their infinite points. Thus 2, 2,, 8;, 83
are situated on a circle in B. We denote by & hyperbolical measure of
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the angle between a and S. Observe that, in view of proposition 6, the
mapping m, |int N is conformal. Then the following relation holds between
¢ and the cross-ratio of the chosen pairs of infinite points:

9
(%15 225 81y 83) = _Ctg?°

This is proved in [3] in the case where a and f are both in I7,, but
remains true in general because of the invariance with respect to 7' of both
members of this equality.
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