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1. Introduction. Let X be a topological space with a base #. Misik
defined two classes; D(#) and D, (4), of real-valued functions on X (see [4]
and [5)). f eD(#) if for each Be#, x, y €B (the closure of B), and each real
number 7 such that f(x) <n < f(y), there exists zeB with f(z) =n.
f €Dy (#) if for each Be#, x, y eB, each real number 5 such that f(x) <7
< f(y), and each ¢ > 0, there exists z€B with f(z) e(n—¢, n+e¢).

In the case where X is the Euclidean plane E, and 4 is the collection of
all open intervals in E,, the following is proved [6]:

THEOREM 0. Let f € Dy(#). Then max(f, g) €Dy (#) for every g €D, (4) if
and only if f is upper semi-continuous on E,.

It is natural to ask if the same can be said for the class D(#4). The
answer turns out to be affirmative. To prove it, we need to use an
intermediate class of functions which is exactly the class of uniform limits of
functions in D(#). This concept, while real-valued functions on the real line
are considered, can be found in [2].

2. Preliminaries. Throughout.this paper, all functions are real valued, ¢
is the cardinality of continuum, X is a topological space, and if 4 < X, then
A, A, A° and Card(A4) denote the closure, derived set, interior and the
cardinality of A, respectively. Also, 4 is a base for X such that Card(B) > ¢
for each Be4.

DeriNniTION. Let A < X. The set A is said to be dense (4) [c-dense (#)]
in itself if, for each xeA and Be4# with x€B,

BnA#@ [Card(Bn A)=c].

If A; = A, A, is said to be dense (#) [c-dense (#)] in A if, for each x€A and
Be# with x€B,

BnAy,#® [Card(Bn Ay = c].

Let A, < A < X. It is clear that if A is dense (#) [c-dense (#)] in itself
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and A, is dense [c-dense] in A, then A4, is dense (&) [c-dense (#)] in A and
in itself.

The proof of the following proposition is omitted. Boboc and Marcus
proved a similar result [1].

ProPoSITION. Let X = E, and # be the collection of all open intervals in
E,. Then any c-dense (#) in itself set A is the union of countably infinitely
many disjoint nonempty subsets each of which is c-dense (#) in A.

3. Definition and some properties of D, (-4).

DeriNITION. A function f on X is said to be in the class D,(#4) if, for
each B € .4, x, y €B, each real number #n such that f(x) <n < f(y), and each
e >0,

Card(\z€B: f(z)e(n—¢&, n+¢)}) = c.

This is equivalent to f eD,(#) if, for each Be®, x, yeB, and any real
numbers a, b such that f(x) <a <b < f(y),

Card(\z€B: f(z)€(a, b)}) = c.
Clearly, D(#) < D,(#) < Dy(#4). In [3], Farkova proved a theorem

under the condition that .# satisfies (1*) and (2).

(1*) For arbitrary xe X, Be4, if O is an open set and x €O N B, then
there exists U €.# such that

UcOnB and xeU-U.
(2) For every Be.# and every decomposition of B,
B=CuD, CnD=0Q, C#0O=#D,

with the property that U nB = C, U n B < D, respectively, whenever U e #
and U c C, U c D, respectively,

CnD#@Q#CnD.

THEOREM F ([3]). Let .# be a base for X satisfying (1*) and (2). Let
f, g €Dy (#) be such that every x € X is a point of upper semi-continuity of f or
g. Then ‘
¢ = max(f, g) €Dy (A).
It is not hard to modify the proof and obtain the following

THEOREM 1. Let .# be a base for X satisfying (1*) and (2). Let
f,g€D,(#) [or D(A)] be such that every xe€X is a point of upper semi-
continuity of f or g. Then ¢ = max(f, g)€D,(#8) [or D(4), respectively].

THEOREM 2. Let F be a continuous function of two real variables. If the
property (P,) below holds, then the property (P,), which is obtained by
replacing Dy(#) by D, (#B) in (P,), also holds.
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(Po) If f, g €Dy (.A) are such that each x € X is a point of continuity of f or
g, then F(f, g)€D,(4).

Proof. Let f, g eD,(#) be such that each x€ X is a point of continuity
of f or g. Suppose (P,) is true. We want to show that F(f, g)eD,(#4). Let
Be.4, py, p, €B and

F(f(p), 9(py)) < a <b<F(f(pa), g(p2))
be given. Since D,(#) < D, (#), by (P,) we have F(f, g) eD,y(#). There exists
po €B such that

a < F(f(po), 9(po)) <b.

Since F is continuous, there exists é > 0 such that a < F(s, t) < b whenever

Is—f(po)l <& and |t—g(po)l < 6.

Suppose f is continuous at p,. Then there exists B, €.#4 such that
po€EByo =B and |f(p)—f(po) < for all peB,.
Also, since p,€B, and ge€D,(4),

Card(ipeBy: lg(p)—9g(po)l <)) > c.
Clearly,
a<F(f(p),g(p)<b for peB, with |g(p)—g(po)l <.

Since B, — B, we have

Card({peB: F(f(p), g(p)e(a, b)l)=c.

The proof is completed.

CoroLLARY. Let X be a locally connected topological space, # a base
consisting of open connected sets and satisfying (1*). Let g be continuous on X.
Then f+geD,(#) if feD,(#); fgeD,(#) if feD,(#), and f is bounded at
each x€ X where g(x) = 0.

This follows from results of Misik ([S], pp. 418 and 422) and the proof
of Theorem 2 above. ‘

Theorem 2 above and Theorem 3 below, in the case where X is the real
line and 4 is the collection of all open intervals, are proved in [2].

LemMma 1. If \f,\ %, is a sequence of functions in D(#) converging
uniformly to f, then f €D,(#).

Proof. Let Be#, x,yeB and f(x) <a <b < f(y) be given. We set
e=4(b-a and ne(3(a+b)—e, (a+b)+e).

There exists no, such that |f(z)—f,(z)] <e¢ for all n>n, and all zeX.
Then f, (x) <n < fo,(¥), and hence there exists z, €B such that f, (z,) = n.



Thus

f(zq) e("-sa ﬂ+£) < (aa b)
Clearly,

‘z€B: f(z)e(a, b)! o %z,,: ne(ﬂ-—s, ﬁ~—b+za)}

and
Card('z€B: f(z)€(a, b))) = c.

Thus Lemma 1 is proved.

In the sequel, we consider the space E, with the base .4 consisting of all
open intervals in E,.

LEMMA 2. Let feD,(#) and ¢ > 0 be given. Then there exists g €D (#4)
such that |f(p)—g(p)l <€ for all peE,.

Proof. Decompose the real line R into countably many half-open
intervals,

R= U1,

n=1
each I, = [a,, b,) has length b,—a, <¢. Let
A,=f"'(I) and W ={n: A4,# Q}.

Then {A,: neA/} is pairwise disjoint and, for each ne A, A, is c-dense (#)
in itself. By the Proposition, there exists a pairwise disjoint sequence
{A,)2, such that

©
A, = U Ay,
i=1

each A, is c-dense (#) in A4,, and hence in itself. Let (J;!2, be an
enumeration of all the open intervals with “rational end points” in E,. Then
(#) for every peE, and Be€# such that peB there exists i such that
pelJ; c B.
Let P, = A, nJ;foreachne.4 andi =1, 2, ... Since A, is c-dense (#)
in A, and J; €4,

Cal‘d(P,,,-)=c if Pm'¢®.

For each (n, i) such that P, # Q, let g,; be a one-to-one onto map from P,
to [a,, b,). We define g as follows:
gu(p) If peP, (ne.v,i=1,2,..),

9(p) = % f(p) otherwise.
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It should be noted that if (n, i) # (n', i’) for some n, n e 4" and some positive
integers i, i’, then 4,, N A,; = @, and hence P, NP,; = @. Thus g is well
defined. ,

Since b,—a, < ¢ for each n, g(p)€[a,, b)) and f(p)€(a,, b,) for each
peP, < A,, we have |f(p)—g(p)] <¢ for all peE,. It remains to show that
g eD(4).

First, we note that g(p)€l, if and only if f(p)€l,, and if f(p) = a, for
some n, then g(p) = a,. In other words, if g(p) €l;, then f(p)€l,.

Let Be.4, p, qeB and neR such that g(p) <n <g(q) be given. There
exist ny, ny, ny such that g(p)el,,, g(q) €l,, and nel,,.

Case 1. ny =n,. Then
g(@el,, and a, <n<g(q) <b,,
By the above observation, f(g)€ly,, that is, q€4,, N B. There exists
q €4,, NB.
Case 2. n3 # n,. Then I,, N1, = @. By the inequalities

@,y SN <g(g) < b,,
we see that b,, <a,,. If f(p) <, then

f(p<n<b,, <a,, <f(9.
There exists ¢’ € B such that

f(q)em, byy) =15,
that is, g¢'€A,, " B. If f(p) > n, then the inequalities

a,, <g(p) <n < f(p) <b,
imply ne€l,,, and hence n, = n;. Also, the same inequalities imply peA, .
Hence peA,, N B. There exists '€ A4,, " B.
In any case, there is a ¢'€A,, N B. By (3), there exists i such that
q' €J; < B. Now J;€4 and q'€A4,, nJ;. It follows that

Pi=A4,,0nJ # )

since A,,; is c-dense (4) in A,,. Clearly,

Pn CJiCB’ g(B)Dg(Pny’):Iny

3!
that is, there exists z €B such that g(z) = . Thus Lemma 2 is proved.
THEOREM 3. f €D, (.#4) if and only if f is the uniform limit of a sequence of
fungtions in D(.4).
This is a consequence of Lemmas 1 and 2.
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4. The maximum of functions in D,(#) or D(%).

THeoREM 4. Let f €D,(#). Then max(f, g) eD,(.4) for every g €D, (%) if
and only if f is upper semi-continuous on E,.

Proof. It is proved in [6] that, in the space E,, the base .4 consisting
of all open intervals in E, fulfils conditions (1*) and (2). Thus the “if” part
follows from Theorem 1. For the “only if” part, the analogous statement for
D,(#) is proved in [6] by constructing a function geDy(#) but
max (f, g)¢ Do (-4) in the case where f is not upper semi-continuous on E,. It
can be shown that the function g constructed there is actually in D,(.4) when
f€D,(#A). Now we sketch the construction and the proof here. With no loss
of generality, we assume that f is bounded from below.

Suppose f is not upper semi-continuous at p, = (xg, yo). Then there is a
number K such that

f(po) <K < lim f(p)

P ~Po
and
2K < f(po)+ lim f(p).
P PO
Let
po() =1p=(x,9): x> x0,y> Yo,
po(Il) = 1p =(x, y): x <Xxo, ¥ > Yo!,
po(IIl) = 1p =(x, y): x < xp, y < Yo\
and

po(IV) = 1p=(x, y): x> x0, ¥y <Yo,.

Since f €D,(.4), we can show that

lim f(p) =max | lim f(p): A=1,1II,1II, IV'.
P *pPo P PO
P pol.0

Also, for each A =1, II, IMl; IV, there exists a sequence
{Pn}:él < po(A)
such that p, —po and f(p,) = f(po). Let

X,=po(A)—ipe} and #,=BnX, Be#s, BnX,#0!.

Then 4, is a base for X ,, satisfies (1*), and each member of 4, is
connected.
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In the case

lim f(p) < 2K —f(po),
PP
pepg(A)

there is a U ,€.4 such that

Uyscpod), poeU, and f(p) <2K—f(po)+1

for every peU ,. That is, f is also bounded from above on U ,. We assume
that the above-mentioned sequence |p,} 2, < U,. Let

AA1=:p,,In=l,2,...:, AA2=XA_UA'
For each peX ,, we define

— d(P, A/ll)
d(p, Ay)+d(p, A ;)

where d is the usual distance. Then h, is a continuous function on X ,. We
have

h +(p)

hA(AAl) = 0, hA(AAZ)'= 1
and

hy(p) €, 1) if peX —Ay—A,.
By the Corollary, the function g, on X , defined by

g4(p) = 2Kh,(p)—(2h4(p)—1)f(p) for peX,

is in D (.4 ,).
In the case
lim f(p) > 2K —£ (o),
P~Po
pepo(A)
we define

g.p)=2K—f(p) for peX,.
Again, g ,€D,(#,).
Since g 4(p) =g 4 (p) for peX ,n X ,, we can define g on E, as follows:
gi(p) lf pEXA (A = I’ II, III, IV),

9(p) = %f(Po) if p=p,.

Using the fact that g ,eD, (4, and the way we define g , for each A, we can
show that geD,(4). The proof is completed.
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THEOREM 5. Let feD(:#). Then max(f, g) €D (#) for every geD(4) if
and only if f is upper semi-continuous on E,.

This follows immediately from Theorems 1, 3 and 4.

Remark. The Proposition and Theorems 3-5 can be readily extended
to the n-dimensional Euclidean space.
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