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Introduction. A quadratic form scheme is a triple (g, —1, d), where g is
an elementary 2-group, —1 is a distinguished element in g and d is a
mapping assigning to each a in g a subgroup d(a) of g. We require that the
following four axioms hold:

Cl. aed(a) for any aeg;

C2. bed(a) implies (—1)aed((—1)b), for any a, beg;

C3. U {d(x): xead(ab)} = (ad(ax): xed(b)}, for any a, beg;

C4. <ay,...,a,,c>=Cby, ..., b, 0) = (ay,...,a,) = by, ..., b).
Here the finite sequence {a,, ..., a,) of elements of g is said to be a form of
dimension n and = is the equivalence relation defined as follows: {a) = {b)
iff a=0»>, <a,, a,) = <by, b,) iff a,a, =b, b, and b, €a,d(a, a;) and for n
=3, <ay,...,a,) =<y, ..., b)) iff there is a finite chain of forms of
dimension n beginning with <a,, ..., a,)> and ending with <b,, ..., b, such
that any two neighbors in the chain have at least n—2 elements in common
and the remaining two elements make equivalent forms of dimension 2.

The motivating example is the scheme of a field F of characteristic not
two, where g =F/F? —1=(—1)F? d(a) is the subgroup of cosets
represented by the binary quadratic form X?+aY? over F and = is the
isometry relation of diagonalized quadratic forms over F.

It is an open question whether every quadratic form scheme comes from
a field. In this paper we show that Hermitian forms over certain division
algebras also determine quadratic form schemes. Whether or not these
schemes are always realizable by fields is an open problem (P 1316) but we
show that in two special cases the quadratic extension of a field on
quaternion algebras the scheme determined by Hermitian forms is realizable
as the factor scheme of the scheme of a field. Again, in general, it is not
known whether the factor of a scheme coming from a field comes itself from
a field. (P 1317)

1. Notation and terminology. Throughout we denote by D a division
algebra with an involutory antiautomorphism ¢ and assume that F



28 K. KOZI1O}

= |xe D: a(x) = x] is contained in the center of D. For x in D we define the
norm N (x) = x-o(x). We assume that N(x) = N(o(x)). The norm is a group
homomorphism from D’ into F° and F'?> = N(D). A Hermitian space is a
finite dimensional left D-linear vector space V with a non-degenerate
Hermitian form f. Thus f: VxV - D is D-linear in the first variable and
f(x, »)=a(f(y, x)). We say f represents aeD if there is an xe V such that
f(x, x) = a. Observe that then 6 (a) = a, that is, the values represented by f
belong to F and for any de D, f(dx, dx) = aN(d), so that f represents cosets
of N(D') in F".

Any Hermitian space (V,f) has an orthogonal basis |x,, ..., x,); if
S(xi, x)=gq;,i=1,2,...,n, the diagonal matrix diag (a,, ..., a,) is said to
be a diagonalization for (V, f). Since we are assuming f is non-degenerate,
all the g;’s are different from zero.

Basic facts on Hermitian spaces can be found in [3], [4], [5], [8], and
for details concerning quadratic form schemes see [1], [2] and [7].

2. The main lemma. A very well-known result on quadratic forms
states that two binary quadratic forms over a field are equivalent if they
represent a common element and have equal determinants (up to squares) (cf.
[6], Prop. 5.1, p. 20). Our basic observation is that an analogous result holds
for Hermitian spaces of dimension two.

LemMa 2.1. Let (V,f) and (W, h) be two-dimensional Hermitian spaces
with diagonalizations diag(a, b) and diag(c, d), respectively. The spaces (V, f)
and (W, h) are isometric if and only if the following two conditions are satisfied:

(1) ¢ = au+bv for some u, ve N(D);

(i1) cd = abw for a certain we N (D).

Proof. Assume first (V, f) = (W, h). We take the point of view that we
have two orthogonal bases {x, y] and |z, ] of the same Hermitian space
V,f) with a=f(x,x), b=f(y,y), c=f(z,2) and d = f(r,1). Let z = px
+qy and t = rx+sy for some p, q,r, seD. We have

c¢= f(z,2)= f(px, px)+f(qy, qy) = aN (p)+ bN (9)
which proves (i), and
(2.1.1) 0= f(z, )= f(px, rx)+f(qy, sy) = paa(r)+ qba (s)
and

cd=f(z,2) f(t, 1) =(N(pa+ N(q)b)(N(r)a+ N(s)b),

whence

(2.1.2) cd = N(pr)a*+ N(qs)b*+(N (ps)+ N (qr)) ab.
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From (2.1.1) we get apa(r) = —bqa(s), hence also ara(p) = —bsa(q) and so
(2.1.3) a? N (pr) = b2 N(gs).
Substituting (2.1.3) into (2.1.2) gives

(2.1.4) cd = (N(ps)+%f—’N(qs)+ N(qr))ab.

If s =0, we get cd = N(gr)ab, as required in (ii). If s # 0, we get from (2.1.3)

a? -
N(@ = ¢z2N(prs™)

and substituting this into (2.1.4) gives

2
od = (N(ps)+2g—N(pr)+ (g) N(ps~") N(r)z)ah

2
= N(ps™!) (N(s)+§N(r)) ab

=N (ps'1 (N(s)+%N(r)))ab,

as required in (ii).

Now let us assume we are given the diagonalization diag(a, b) for (V, f)
and ¢, d satisfy (i) and (ii). Let u=N(p), r=N(q) and !x, y} be the
orthogonal base with f(x, x) =4, f(y, y) = b. Take z = px+qy; then f(z, z)
=aN(p)+bN(g) =c #0 (we are assuming all the spaces are non-
degenerate) so that z is an anisotropic vector in the space (V, f). Pick up a
vector t'e V orthogonal to z. Then |z, t'! is an orthogonal base for (V, f) and
by what has been proved above, there is an re D’ such that cd’ = abN(r),
where d' = f(t', t).

By (ii), cd = abN (s), for a certain seD". It follows d' =dN(rs™!) and
now putting t =r~'st’ we get

fe,)=N@F"ts)f(,t)=d.

Thus |-, t} is an orthogonal base for (V,f) and the corresponding
diagonalization is diag(c, d). It follows that (V, f) and (W, h) are isometric,
as required.

COROLLARY 2.2. The non-zero values represented by Hermitian form with
diagonalization diag(1, a) form a subgroup of F' containing N(D").

Proof. First observe that for any Hermitian form f and any ae F’ the
mapping af: VxV - D defined by af (x, y) =d'f(x, y) provides V with a
new Hermitian form. If f and g are isometric Hermitian forms, so are af and
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ag, and if f has diagonalization diag(a,, ..., a,), af has diagonalization
diag(aa,, ..., aa,).

Now let f be a form with diagonalization diag(1, a) and let f represent
b. Then by Lemma 2.1

{1, a> = (b, ab),

where the notation d{c,d) is used for the Hermitian space with
diagonalization diag(c, d).

If f represents another element ¢ in F’, then also (1, a) = {c, ac).
Hence <b, ab) = {c, ac) and after scaling both forms by b we get isometric
forms (b2, ab?) and (bc, abc). Since (b?, ab?®) = (1, a), we conclude (1, a)
represents bc. Further, if f(x,x)=b, f(b~'x,b™!x) =b"! and this proves
the non-zero values represented by f form a subgroup of F°. Finally, if
f(x, x) =1, f(dx, dx) = N(d), for any de D', as required.

Remark 2.3. In the case of quadratic forms the corresponding result
can be obtained immediately from the identity

(x% + ay?) (u* + av?) = (xu —ayv)* + a(xv+ yu)>.

3. Schemes and Hermitian forms. We write g = g(D, o) for the factor
group F'/N (D) and —1 for coset (—1) N(D). For any ae F’ let d(aN(D’) be
the set of all cosets N(D’) represented by 2-dimensional Hermitian space
{1, a). '

Tueorem 3.1. (g(D, 6), —1, d) is a quadratic form scheme.

Proof. By Corollary 2.2, d(aN(D) is a subgroup of g. Certainly C1 is
satisfied. Before going on let us make the following remark. For aeF’ let
D {1, a) denote the set of elements of F' represented by the Hermitian form
{1, a). Then D (1, a) is a subgroup of F’ containing N (D) (Corollary 2.2)
and so it consists of cosets of N(D) in F° forming d(aN(D)). Thus to
determine d(aN(D’) it is sufficient to find D1, a) and this is {N(D)
+aN (D)} \ {0}.

We take this point of view when checking C2 and C3.

Suppose f(x,x)=1, f(y,y)=aand f(x,y)=0.If beD{1, a) then b
= N(p)+aN(q) for some p, geD. If N(q) # 0, then

—a= N(E)—bN (l)eD a, —b,
q q

as required. If N(g) =0, b= N(p) and {1, —b) = {1, —1). The Hermitian
space (1, —1) represents everything represented by the hyperbolic. plane
over the field F, hence it represents —a. Thus again —aeD {1, —b) and C2
is satisfied.
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To prove C3 we observe that
U{D |, x>: xeaD 1, abd} =) (D1, x): xeD {a, b}
=) IN(D)+xN(D): xeaN(D)+bN (D)} \ {0}
= (N(D)+aN(D)+bN(D)}\ (0},
and on the other hand
U{aD (1, ax>: xeD 1, b)} =J{D<a, x): xeD (1, b))}
= {aN(D)+ N(D)+bN (D)} \ {0}.

Thus C3 holds as a consequence of the commutativity of addition in D.

Now C4. For a,, ..., a,e F' we understand by <(a, N(D), ..., a, N(D"))
the class of isometric Hermitian spaces with diagonalizations
diag(ay 44, ..., a,4,), 4,€ N(D). The relation =~ is meant to be the equality
relation between classes of isometric Hermitian spaces. Then {(aN (D))
= (bN (D)) iff aN(D) = bN(D") and for dimension 2, Lemma 2.1 assures
that = is the equivalence relation needed in C4. As to the higher dimensions,
a, straightforward modification of the proof of Witt’s chain-equivalence
theorem for quadratic forms establishes the result for Hermitian forms (cf.
[6], p. 21). Now C4 hoilds by the Witt cancellation theorem for Hermitian
forms (cf. [3], p. 21). This proves the theorem.

Two quadratic form schemes (g, —1, d) and (g’, —1’, d') are said to be
isomorphic if there exists a group isomorphism d: g — g’ such that a(—1)
= —1' and a(d(a)) = d'(x(a)) for every acg.

Remark 3.2. Denote by S(D, 6) the quadratic form scheme described
in the Theorem 3.1 and by S(F) the quadratic form scheme coming from the
field F. Then S(F, id) is isomorphic to S(F).

A scheme S = (g, — 1, d) is said to be realizable by a field iff there exists
a field F whose quadratic form scheme is isomorphic to S. It is not known
whether every quadratic form scheme is realizable by a field. Theorem 3.1
provides examples of schemes whose realizability by fields is unknown and
perhaps gives a chance to find a scheme not realizable by any field. The
proposition below suggests that there is no easy answer to this question even
in the case of familiar algebras D. '

Recall first the concept of a factor scheme (cf. [1]). Let ¢ be a Pfister
form in the scheme S =(g, —1, d) and D be its value group. Put g’ = g/De,
—1"=(—1)De¢ and d'(aD¢) = the value group of the Pfister form (1, a)®¢
modulo D¢. Then §’' =(g’, —1’, d') is a quadratic form scheme and §’ is said
to be the factor scheme of S modulo D¢ (cf. [1)).

Even if S comes from a field F, it is an open question whether §’ is
realizable by a field. Now it turns out that in two typical cases the schemes
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supplied by Theorem 3.1 are isomorphic to the factor schemes of the scheme
of a field.

ProposiTioON 3.3. (i) Let D = F(\ —a) be a quadratic extension of a
field F of characteristic not 2 and & be the non-trivial F-automorphism of D.
Then the scheme S = (g(D, o), —1, d) is isomorphic to the factor scheme of the
scheme S(F) of F modulo D (1, u).

—a, —b :
(i) Let D= (a_) be a quaternion algebra over a field F of

F

characteristic not 2 and & be the usual conjugation. Then S =(g(D, o), — 1, d)
is isomorphic to the factor scheme of the scheme S(F) of F modulo
D1, u.bh.ab>.

Proof. We have ¢g(D, a) = F//N(D’) so that ¢g(D,e) = F/D{l, a) in
the first case and g(D, o) = F/D{1, a, b, ab) in the second.
(1) The canonical isomorphism

F/D <1, a)— F/F?/D {1, a/F?

establishes the isomorphism of S and S(F) modulo D <1, ).
(i) The canonical isomorphism

F'/D1,a,aby— F/F?*D(1,a,b,abdF?
establishes the isomorphism of § and S(F) modulo D (1, a, b, ab>.

A final remark is concerned with the Witt rings of the objects considered
above. First, for any scheme S one can define the Witt ring W (S) of the
scheme S by using the same approach as in the field case. On the other hand
one has the Witt group W (D, o) of Hermitian forms over D with involution
o and tensor products make it into a ring in the case D is commutative (cf.
[5]). Comparing the construction we find out that if D is commutative, there
is a natural ring isomorphism W(S(D, 6)) > W(D, 6), and in the non-
commutative case there is a natural group isomorphism W (S(D, o))
- W(D, o). Since W(S(D, o)) is a ring, this isomorphism induces a ring
structure on the additive group W (D, o). It is not readily seen how to
explain geometrically the induced multiplication in W(D, ¢), D non-
commutative.
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