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INDUCTIVE INVARIANTS
OF CLOSED EXTENSIONS OF MAPPINGS
BY

TOGO NISHIURA (DETROIT, MICHIGAN)

The origin of the main result of this note* is the following conjecture
of A. Lelek:

If f is a continuous mapping of a separable metrizable space X onto
a separable metrizable space f(X), then

dim X < dimf(X) + max[dimf, def X]+ loccomf+1.

In [3], Lelek proved the conjecture for loc comf = —1 and posed
the conjecture as a problem (P 469). _
The conjecture is proved correct in this note. We prove a theorem
concerning closed extensions of continuous maps (see Theorem 3.1).
The a ove given conjecture is an immediate corollary to this theorem,

1. Preliminary definitions. We give in this section the necessary
definitions and an elementary lemma needed to prove the main Theorem
3.1. All spaces under consideration are separable metrizable spaces.
We agree that, for A <« X, Clx(4), Frx(A) and Intx(A) are the closure,
boundary and interior of 4 in the space X, respectively.

1.1. Definition. Let X be a space and C(X) be the family of com-
pactifications of X. The compactness deficiency of X is the number

defX = min{dim(Y —X): YeC(X)}.
1.2. Definition. Let J be a family of spaces which is topologically

closed; i.e., F'eJ and F’ homeomorphic to F imply F'e7 . The inductive
invariant I(X,T) induced by 7 is defined for every space X as follows:

I(X,7) = —1if and only if Xe7.

For each integer n >0, I(X,J) < n provided that each point of
X has arbitrarily small open neighborhoods U in X such that I (Frx(U)), 7
<n-—1.

* This research was partially supported by the National Science Foundation
grant GP 12015.
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I(X,7) = nis defined in the obvious manner for n = —1,0,1, 2, ...
cevy 0O,

In this note we will let 7 be the family of locally compact spaces
and denote I(X,J) by loccomX.

1.3. LEMMA. Suppose Y o> X and n>=0. Then, loccomX <n if
and only if each point of X has arbitrarily small open neighborhoods U in
Y such that

loccom (Fry (U)NX) < n—1.

Proof. The lemma follows from [4], theorem 3.5, since each closed
subspace of a locally compact space is again locally compact.

1.4. Notation. Let f: X — f(X). Then we agree that

dimf = sup {dimf~(w): wef(X)}
and
loccomf = sup{loccomf!(w): wef(X)}.
Also we agree that
loccom (9f) = sup{loccomFry[f~}(w)]: wef(X)}.

- Let us remark, for closed continuous mappings f, that Frx[f*(w)]
is compact for each wef(X) and if X, = |J {Frx[f ' (w)]: wef(X)} and
X,<c X, c X, then f|X, is also a closed continuous mapping of X, onto
f(X,). So, for closed mappings, loccom(df) = —1.

2. A preliminary theorem. The proof of our main theorem 3.1 relies
on the following theorem which is proved by induction:

2.1. THEOREM. Suppose Y o> X. If Z is a closed subset of X and C
is a closed subset of Y with CNX = Z, then
dimC < max[dimZ, dim(Y — X)]+loccomZ +-1.
The proof of the theorem is established by considering the following
two statements:

Statement 4,,. Let X, Y, C and Z be as in the hypothesis of the
theorem. If loccomZ < »n then for each ze¢Z and ¢ > 0 there is a subset
U of C such that ze¢U, U is open in C, diameter of U < ¢ and

dimFr,(U) < max[dimZ, dim(Y — X)]+n.

Statement I',. Let X, Y, C and Z be as in the hypothesis of the
theorem. If loccomZ < n, then

dimC < max[dimZ, dim(Y — X)]+n+1.

We will prove:
(i) I'_, is a true statement.
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(ii) The validity of I, , implies the validity of 4, for n > 0.

(iii) The validity of 4, implies the validity of I', for n > 0.

The above theorem follows immediately from I',, » > —1.

2.2, PROPOSITION. I'_; i8 a lrue statement.

Proof. Z is locally compact. Hence Z is open in Cl; (Z) and therefore
each of the sets C —Cly(Z), Clo(Z)—Z and Z are F, subsets of C. Also
C—Z c Y—X. Consequently, the sum theorem ([1], p. 30) implies
dimC < max[dimZ, dim(Y — X)].

2.3. ProPOSITION. The wvalidity of I',_, implies the validity of A4,
for n>0.

Proof. Let loccomZ < n, z¢Z and ¢ > 0. By 1.3, there is an open
neighborhood U in C of z with diameter U < ¢ and loccom [Fr,(U)NZ]
<n—-1. Let C' =Fry(U) and Z’' =Fro(U)NnZ. Then the validity
of I',_, implies dim(C’' < max[dimZ’',dim(¥Y —X)]+n. Since Z' < Z,
dimFr,(U) < max[dimZ, dim(Y — X)]+» and 4, is now valid.

2.4. PROPOSITION. The validity of A, implies the validity of I, for
n=90.

Proof. Let loccomZ <% and m be a positive integer. There is a
countable family £, of subsets U of C satisfying the following cond-
tions:

(1) U is open in C;

(2) diameter of U is < m™';
(3) AimFry(U) < max[dimZ, dim(Y — X)]+ n;

4) U%, > Z.

Let @ = N{U%,: m =1,2,...}. Clearly, @ is a G, subset of C
containing Z and dim(C —@) < dim(C —2) < dim(Y — X). Let us write

H=U |U{Fro(U): Ues,}]. Thus H is an F, subset of ¢ and dimH
m=1

< max [dimZ, dim(Y — X)]+n by the sum theorem ([1], p. 30). Again
by the sum theorem, we have

dimf{(C-@)VH] < max[dimZ, dim(Y — X)]+n.
By [1], proposition B, p. 28,

dim ¢ < dim[(C —@)UH]+dim(G— H) +1
< max[dimZ, dim(Y - X)]+»+1+dim(G—H).

From conditions (1) and (2) of 4%,, and the definition of H, we infer
dim (G — H) < 0. The proposition is completely proved.

3. Closed extension of continuous mappings. We now proceed to the
statement and proof of our main theorem. The fact that closed continuous
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extensions of a continuous mapping exist is not surprising. The bound
stated in our theorem is of prime interest.

3.1. THEOREM. Let f: X — f(X) be a continuous mapping. Then
there 18 a closed continuous mapping F: V — f(X) such that X 18 a dense
subset of V, F|X =f and

dimf < dimF < max[dimf, def X]+ loccom (df)-+1.

Proof. Let YeC(X) with defX = dim(Y —X). It is well known
that the natural projection p: Y Xf(X) — f(X) is a closed mapping
([2], p. 14). Let G be the graph of f, H be the closure of @ in Y xf(X)
and g =p|H. Then ¢ is a closed mapping of H onto f(X). Let
Hy=J{Frglg ' (w)]: wef(X)}and V = H,UG. Then g|V = F is a closed
mapping of ¥V onto f(X). We must prove dim F satisfies the above ine-
quality. Let we f(X). Then

F~'(w) = Frg[g~* ()] [f (w) x {w}].

It is clear that dimF~'(w)< max[dimFrgz[g~'(w)], dimf]. We

compute an upper bound for dimFrg(g~'(w)). Observe that
Y x{w} > g7 (w), X X{w}> [ (w)X{w},

g7 (w)N (X X {w}) = f7(w) X {w}.
Also, we have
Frylg™ (w)]n (X X {w}) = Frg[g™" (w)N(X X {w})]
= Frx[f~(w)] x {w}.

We can now apply theorem 2.1, with X x{w}, ¥ x{w}, Frg[¢~*(w)]
and Fry[f~!(w)] x{w}, to conclude that

dimFrg g~ (w)] < max[dimFry[f!(w)], dim(Y — X)]+
+loccomFrg[f~!(w)]+1 < max[dimf, def X]+loccom (df)+1.

It now follows that dim F satisfies the required inequality and theorem
is proved.

3.2. CorROLLARY. Let f: X — f(X) be a continuous mapping. Then
dim X < dimf(X)+max[dimf, def X]4loccomf+1.

Proof. Let F: V — f(X) be the closed continuous mapping of the-
orem 3.1. Then the inequality above follows from Hurewicz’s closed
mapping theorem ([1], p. 91) since dimX < dimV and loccom/(df)
< loccomf. The last inequality is valid since theorem 3.3 of [4] implies

loccomFry[f~!(w)] < loccomf?* (w)

for every wef(X).
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4. Remarks. An obvious observation to make is that a by-product
of the proof of theorem 3.1 is the construction of a proper mapping, i.e.,
a closed continuous mapping with compact point inverge, g: H — f(X)
such that X is a dense subset of H and g|X = f. This leads to our final
theorem.

4.1. THEOREM. If f: X — f(X) 48 a continuous mapping, then there
18 a proper mapping F': V — f(X) such that X is a dense subset of V F|X = f
and

dimf < dim F < max [dimf, def'X]—l;loccomf+1.

With much less work, one can prove the existence of proper mappings
F: V > f(X) with X dense in V, F|X = fand dimF < dimf+ dim X +1.
Since dimf>loccomf and dimX > defX >loccom X > loccomf (see
[3], section 2), the bounds found in theorems 3.1 and 4.1 are sharper.
To show that the bounds are in fact sharper, we have the following ex-
ample. The example also shows that the bounds are in a sense best pos-
sible.

4.2, Example Let X = AUBUC, where A =[0,1]X%x[0,1]X
x[0,1), B =[0,1]%x{0,1} x{1}u{0, 1} x[0,1]x {1} and C is a countable
dense subset of [0,1]X[0,1]x{1}. It is known that def(AUB) =2
([6], theorem 4.1.1). Hence, it is easily shown that defX = 1.

Let f: X -~ W be a continuous mapping of X onto W = {weRS3:
|lw| <1} such that f(BuC) = (0,0,1) and f|A is a homeomorphism
onto W—{(0,0,1)}. We have Fry[f'(w)] =f'(w) for every weW.
Hence we conclude loccom (df) = 0.

Let F': V - W be any closed continuous mapping which extends
f: X >W.Let Vo = J{Fry[F*(w)]: weW} and Fy = F|V,. Then F,
is a closed continuous mapping of V, onto W and F,'(w) is compact
for each weW; i.e., F, is a proper mapping of ¥V, onto the compact spa-
ce W. Hence V, is compact. X being dense in V,, V,is a compactification
of AUB. Therefore,

2 = def(AUB) < dim[V,—(4dUB)]<dim[V,— A] = dim[F;'(0, 0, 1)],
since f|4A is a homeomorphism. We conclude that

. dimF > dimFy > 2 = max[dimf, def X]+loccom (df) +1
and

dimf+dimX +1 = 5 > dimf+def X +1 = 3.
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