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ON THE FIXED POINT FORMULA OF ATIYAH AND BOTT

BY

IPETER WINTGEN]| (BERLIN)

In this paper we give a simple proof of the fixed point formula of
Atiyah and Bott. Let B = {E,, d;} be an elliptic complex of differential
operators on a closed manifold X. We have a sequence

0>T(E) 2 rm) 2 ... 2% rm,) 0.

We consider a differentiable mapping f: X — X together with a chain
map f*:I'(E) - I'(E), induced by given bundle maps ¢;: f*E;— E;
as follows: ’

fFs(v) = cp,(a;)s( f(a:)) for every section s of E,. The maps f* induce
linear homomorphisms of the homology f;: H,(E) - H;(E), and the Lef-
schetz number L(f, E) is defined as

N
L(f, B) = ) (1) tef;.

i=0

For a simple fixed point x of f the number

3 tre, (o)
_ T i
ria) = D) (-1) deb(L—ar,)]

=0

is called the fiwed point index of f in x. Now we can state the fixed point
formula of Atiyah and Bott (cf. [1]-[3]).

THEOREM. Let f: X — X be a differentiable mapping with only simple
fized points and with a chain map ¥ defined as above. Then the Lefschetz
number L(f, E) is given by the sum of all fized point indices: L(f, B) = v»(»).

In our proof we work with parametrics which are especially nice near
the fixed points. We start with an arbitrary parametric {K,, S;} of E.
That means, we have

R
—t -

1-8; =d,_, K, ,+K,d,
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on every I'(E,), where 8;: I'(E;,) - I'(E;) is a smoothing operator and
K;: I'(E;,,) > I'(E;) is a pseudo-differential operator with order(K,)
= —order(d;). (For the formal reason weset K_, = 0, Ky = 0,d_, = 0,
and d, = 0). As usual, we denote the geometric dual E;® Q(X) of E,
by E;, and the external tensor product of E; and E; over X x X by E,;0 E;.
On the diagonal 4 we can take the trace of a section of E,0E; to obtain
a volume form of X (which is here identified with 4).

Lemma 1. Let 8; € I'(EQE;) be the kernel of S Then

(1) L(f, B) = 2(—1)" [ trou(@)s,(fz, 2).
1=0 X

Proof. By composition of f# and 8= {S,} we obtain an endomor-
phism 7T = {T;,} of E  with smooth kernels i (x,y) = ¢;(®)8(fz,vy).
From the given chain homotopy between S and the identity: we. infer
that T and f# induce the same homomorphisms of the homology and (1)
follows from the alternating sum formula for the traces of smooth endo-
morphisms. (Cf. [1], Proposition 2.4. At the end of the paper we give
a modified versmn which is independent of [1].)

" To construct a family of parametries from {K;, 8,}, we choose a smooth
family of real functions on X x X Wlth the following properties. For every
positive real ¢, we have a function ¢’ such that

1. every ¢' is equal tolona nelghbourhood of the diagonal,

2. if ¢ - 0, then the supports of ¢’ contract on A4.

Let k; be the Schwartz kernel of K; and let K} be the pseudo- dlf-
ferential operator with kernel %,¢’. The operator K} differs from K; only
by a smoothing operator. We have

(2) 1 —Sﬁ = difl'Ks—l +Kf-d,;,
where 8¢ is a smoothing operator given by
8 = 8;+d;_y (K, — Ki_,)+ (K;— K})d,.
If we denote the kernels of 8¢ and 8; by ¢ and s,, respectively, then
(3) 8t = 8;+d;_y (@) (ks(1 — ") + 4 (9) (%s(1 — ¢)).

Here and in the following the letters x, ¥ indicate that the differential
operator is applied with respect to the first or the second variable, and
d; denotes the transpose of d; with respect to the natural pairing of I'(E;)
and I'(E;). For the parametric {K%, 8!} we obtain, by Lemma 1, the
following integral formula for the Lefschetz number:

N
(4) L(f, B) = D) [ tro:i(a)si(fz, 2).

t=0 X
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From now on we assume that the fixed points are isolated. We can
separate the fixed points p,, ..., p; by open neighbourhoods U,,..., U,.
Let ¢ be so small that the intersection of supp(s}) with the graph fx 1(X)
of f is included in the union of all f x 1(U;). (This is possible since supp (s})
< supp(¢').) Then we obtain

"k

N
L(f, B) = D [ D) (—1)tro,(@)s(fr, z).

jm=1 Uj im=0

In the following we shall show that for suitable ¢ the integrals on
the right-hand side converge to »(p;) and the fixed point formula will
hold (in fact, one can show that the integrals do not depend on the choice
of ¢! and, therefore, they give the exact value of the fixed point index).
Now, the problem is reduced to a local one and up to the end of the proof we
shall work in a neighbourhood U =Uj,of one of the fixed points p = p,. We
can asgume that U is contained ina coordmate patch and that the bundles
E, are trivial over U. We have E,| U= U x C™, Allsections are to identify
with their coordinates. For example, s;(z, ) is to identify with 3;(z, v) ®
®dy, where 3;(z,y) denotes an (m; X m,;)-matrix depending on # and y,
and dy denotes the Lebesgue volume element of the coordinate space.
For simplicity, we write again s,(x, y) for 3;(z, v).

We consider in detail only the case where the operators d; are of the
same order 1 (cf. Remark 1 below for the general case). Then K, are pseudo-
differential operators of order —1. By the theory of pseudo-differential
operators, we can consider K, as usual (singular) integral operators. The
kernels are smooth outside the diagonal, and near the diagonal we have

(w1th r(w,y) = le—y1)

®) b(@,9) = 00",
0 0
0 (35 + 797 s 9y = 06~

or, equivalently to (6),
(M ki(@+2,9+2)—ki(2,9) = O(lelr*™)

(cf., e.g., [3] for a very clear exposmon) ‘To specify ¢ we choose a real
function » on R such that k([0,1/4]) = {1} and &([1/2, o)) = {0} and
assume that ¢ is glven m Ux U by ¢ (w, y) = h(rt l) Then we have

0
®) S ? = 0™
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and

0 0\,
(9) (awa + 6y¢)¢ = 0.

Under these assumptions we can prove
LEMMA 2. Let a be a section of U x C". Then

(10) lim [ &(p, y)a(y)dy = a(p)
-0 17
and
. ‘ _ a(p)
(11) lim J 8(fy, y)a(y)dy = et —dr)l "

First we point out that the Theorem follows already from (11).
Let a, be an element of C™. We apply (11) to tho section a(y) = ¢,(¥)a,
and we obtain

»:(p)a,
|det (L —df,)|

Lm | si(fy, v)g:(v)a,dy =
0 U

Since the formula holds for every a,, we have

. @:(p)
lim | & (y)dy = .
e ) (Y, Y)oi(y) dy et (1 —af,)]
Taking the matrix trace on both sides and using the known formula
tr(4B) = tr(BA) for matrices, by alternating the summation, we obtain
the desired formula

N
Lm [ ' (—1)tre,(y)s(fy, y)dy = »(p).

0 7 =0

Proof of (10). We apply both sides of (2) to the section & and take
the value at p (a is extended as the zero section over X but for ¢ being
sufficiently small the relevant sections vanish outside U). For small ¢ we
obtain

a(p)— [ &(p,y)a(y)dy = d;_,(2) [ K_, (2, y)a(y)dyl,—,+
U U

+ [ ¥i(p,y)da(y)dy.
U
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We show that the integrals on the right-hand side tend to zero with ¢.
For the second integral we have

| [¥(p, 9)dia(y) dy| < const[Ik,(p, )ldy, Ip—yI<?

(note that k! = ¢'k; and ¢*(p, y) = 0 for [y —p| > ). From (5) it follows
that k,(p,y) is integrable in y and, therefore, this integral tends to zero
with ¢. To deal with the first integral we introduce the local expression
for the operator d,_,:

0
d;_, = Z V5, Fr +w_y.

As above we show that
lim fw,_,(p)Ki.(p,9)aly)dy = 0.

Moreover, the summands involving the first order terms tend to zero
by the following calculation using (6) and (9):

0 0
0z 02"

fk:'—l(‘vyy)a(y)dy = f k’-_l(w,w+z)a(w+z)dz

a @ a 0
= (—0?+W)k§_,(w, y)a(y)dy = f«p‘(w, ”)(FEJFW) ki (@, y)a(y)dy

After the substitution ¥y = x4+ 2 it is possible to differentiate the inte-
grand. The last integral tends to zero by the same arguments as above.

Proof of (11). We apply (10) to the section a(y)|det(1—df,)~".
and substitute ¥y = 2 —f(2). Then we obtain

a(p)
|det (1 —df,)|

We show that the above integral differs from [ s{(fy, ¥)a(y)dy only by
O(t). To do this we multiply (3) by the function ‘= ¢*. We take (fy, y)
and y as the arguments and integrate over U to obtain

(12)  [dady = [v's;ady—[y'd;_,(@)k;_, (1 —¢) ady —
— [ k(1 — ") di(ay)dy .

Here and in the following we omit the arguments in the integrands.
Since p is assumed to be a simple fixed point, there is a constant ¢ such
that |fy—y|>e¢|ly—p| near p and v'(fy,y) vanishes for |y —p|> i/e.
The first integral on the right-hand side tends evidently to zero with ¢.
To handle with the third integral on the right-hand side we note that

limf si(p,2—fa)a(z—fo)dz =
10
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k:(fy,y) = O(ly—2I'"") holds because of (5) and -the simplicity of the
fixed point. Therefore, %;(fy, y) is integrable and, using the local expres-
sion for d;, we obtain

[Ha—g)d vy = [Hagaviay+o)
N ’
= 7‘4( Fyc —-— +w’ )(atp)dy+0(t) = aEf k‘v:a%;-‘w‘dy+o(t),, :

By partial integration, using (9) and the main theorem of analysis,
for the second integral on the right-hand side of (12) we get

0
Juroh—ghaay = = Y [ Sy ik, 0 —gady+

+f'l’(1 9’)[2 kyvi_, 3 aa’+w'—1a+2(aw )”i-xkc ]d?/~

‘The term in the square brackets is integrable. Therefore, the last
integral tends to zero and we obtain

: : 0
St matay = D) ek, —oik)ady+00)

In the same way we obtain an analogous expression for
[st(,y—fy)aly—fy)dy.

(We have only to replace the arguments in the integrands.) But the dif-
ference of the two expressions tends to zero with ¢, which is easily shown
by using (7) and (8).

Remark 1. If the operator d; is of order %,, then we have to replace
1 by %; in (5)-(7) and the partial integrations are to iterate.

Remark 2. The alternating sum formula for the traces of smooth
operators is quite elementary. In our view this formula seems to be
a natural starting point in a proof of the fixed point formula. But to make
the paper self-contained we give an alternative proof of (4) in a special
case which is sufficient for our purpose.

Introducing hermitian metrics on the bundles we can define ad]omts
and laplacians. By standard Hodge thecry we obtain a parametric {K,, §;},
where the smoothing operators 8; are just the harmonic. projections.
Here formula (1) follows easily from the fact. that the harmonic sections
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represent the homology of the complex. But (4) is a consequence of (1)
and (3). To see this we rewrite (3) in the form

(13) 8; = 84— d;_, () ¢, — & () g

Note that ¢! = k;(1—¢') is smooth on X x X. Now we can argue
(a8 Kotake proved his Lemma 3) as follows. We replace s, in (1) by the
right-hand side of (13). The terms involving ¢} cancel out in the alternating
sum because of the identity

f trf¥ (@) d,(2)g(®, Y)lgmy = f trf* (@) d; () 4(@5 9)lzmy:

which is clear for decomposing ¢(»,y) = a(x) ®b(y), and by a density
argument for every section in I'(B,0 E;). Thus (4) is proved.
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