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IMAGES OF COMPACT 0-DIMENSIONAL SEMIGROUPS

BY
AUGUST LAU (DENTON, TEXAS)

Every groupoid considered in the paper is equipped with a Hausdorff
topology which makes the operation jointly continuous. A semilattice
is a commutative semigroup in which each element is idempotent; it is
a Lawson semilattice if it has a basis of neighborhoods each of which is
a subsemigroup. A compact semigroup S is a Z-image if there exists
a continuous homomorphism from a compact 0-dimensional semigroup
onto 8. The first hint of using Z-images is the following theorem:

THEOREM 1. Let S be a compact semilattice. Then the following statements
are equivalent:

(1) 8 i a Lawson semilattice.

(2) 8 is a continuous homomorphic image of a compact 0-dimensional
semilattice.

(3) 8 is a continuous homomorphic image of a compact 0-dimensional
semigroup.

It was well known that (1) and (2) are equivalent (see [3] and [6]).
A compact groupoid S is finitely neighborable (f.n.) if, given any open
cover % of S, there exists a finite refinement ¥~ such that

8 =U{intV|Ver}

and if A, B € ¥, then there exists C € ¥ such that AB < C. It turns out
that compact 0-dimensional semigroups and their continuous homomorphic
images are f.n. (see [4]). So a compact semilattice which is a Z-image
is f.n. For a compact semilattice, f.n. is equivalent to being Lawson [4].

Theorem 1 shows the importance of Z-images. One would like to obtain
an intrinsic characterization of semigroups which are Z-images. However,
for groupoids, there is a solution [5]:

THEOREM 2. Let 8 be a compact groupoid. Then the following statements
are equivalent:

(1) 8 is a conlinuous homomorphic image of a compact subgroupoid
of a product of finite groupoids.

(2) 8 8 fn.
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Unfortunately, the author cannot adapt the groupoid proof to the
semigroup situation. So it remains:

ProBLEM 1 (P 1049). Let S be a compact semigroup. Is it true that §
is a Z-image iff S is f.n.?

Hofmann in [1] used the concept of ultrametric, i.e.,

d(ab, cd) < max (d(a, c), d(b, d)).

It turns out that f.n. is stronger than ultrametric.
LEMMA 1. If 8 48 a compact metric f.n. semigroup, then 8 is ultra-
metrizable.

Proof. Let N,, N,, ... be a countable base for its uniformity. Since &
is compact, for each n there exists a finite open cover %, such that

U{UxU|Uex,} < N,.

Let ¥, be the refinement of %, given by the definition of f.n. If
U,Vevy,,then

(UxU)(VxV)cs WxW  for some Wev,,.

Thus U{V xV|V ev,} is a subsemigroup of 8 x 8. This is suffi-
cient to give S an ultrametric (see [1], p. 283).

LeEMMA 2. Let 8 be a compact semigroup. Then a Z-image implies f.n.
which implies an inverse limit of ultrametrizable compact semigroups.

Proof. Z-images are f.n. [4]. Let 8 be f.n. Then § is an inverse limit
of compact metric semigroups (see [2] or [7]). Each factor of the limit is f.n.,
since 8 is f.n. By Lemma 1, each factor is ultrametrizable.

Before proceeding to the equivalence of the three concepts for commu-
tative semigroups, some lemmas are needed.

LemMMA 3. If S is a compact ultrametrizable semigroup, then each mawi-
mal subgroup is 0-dimensional.

For the proof, see [1], p. 282.

Notation. If F is a subset of a semigroup, then F* denotes the smal-
lest closed semigroup generated by F.

LemMA 4. If 8 i8 a compact commutative semigroup where each mazvimal
subgroup is 0-dimensional and F is a finite subset of S, then F* is 0-dimen-
stonal.

Proof. If G is a compact subgroup of 8 and « € 8, then 2@ is 0-dimen-
sional, since #G is homeomorphic to G/H, where H = {g € G|rg = we}
(e is the identity of @). If ye F, then {y}* is 0-dimensional since its minimatl
ideal is a compact group. Note that § is commutative. Hence F* is the
countable union of finite products of singletons or finite products of
points with compact 0-dimensional groups. A finite product of compact
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0-dimensional groups is the quotient of the Cartesian product of the
groups, and hence is 0-dimensional. By the sum theorem in dimension
theory, F* is 0-dimensional.

If 8 is a compact ultrametric semigroup, then 2% is the hyperspace-
of compact non-empty subsets of S with the Hausdorff metric which
is an ultrametric on 2% (25 is a semigroup under set product). It is equi-
valent to the Vietoris topology generated by

n
Uy Ugy ooy Uy ={4€2%14A < | JU; and ANT; #0 for each i},

i=1

where cach U; is open in 8.

THEOREM 3. If 8 48 a compact commutative semigroup, then the fol-
lowing statements are equivalent:

(1) 8 28 a Z-image.

(2) 8 28 fun.

(3) 8 is an inverse limit of ultrametrizable compact semigroups.

Proof. By Lemma 2, (1)=(2)=(3). It is sufficient to prove that
if § is a compact commutative ultrametric semigroup, then 8 is a Z-image.
Construct a sequence of finite closed covers of 8, denoted by €,, €a, ...,
such that

() mesh¥, < 1/n,

(b) if A € ¥,, then A is the union of some elements of €, ;.

Note that if € is a finite closed cover of § and mesh% <, then
diamA4,4,... 4, <t for 4,,4,,..., 4, €¥, since § has an ultrametric.
Hence mesh%”' < t, where €* is the compact semigroup generated by ¢
in 25. Also ¢* is 0-dimensional by Lemmas 3 and 4.

Let

={4)e[[¢nid,24,, foralln =1,2,..}.
n=1
Then G is a subsemigroup of the Cartesian product. To show that G

is closed, let 4,, , ¢ A, for some n. Choose open sets U and V so that
A, s Uand 4,,,nV #0 and UnV =@. Let

W =29x ... x25x(U)x {8, V>x25x
n—1 factors
Then WNn@G = 0.
Define f: @ — 8 by f((4,)) = M 4, which is a point since mesh % — 0.
To show continuity, let (M Ay € U which is open in 8. Then A, < U for
some N. Let

W =2x ... x25x(U)>x25x%

N-—1 terms
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Then f(WN@) = U.
To show that f is a homomorphism, let (4,), (B,) € @. Then

(N4,){NB,) = N4.B,.

But diamA,B, — 0 implies

(M 4)(NB,) = N 44Bs-

To show “onto”, let # € 8. Then w e A; € ¢,. Since A, is a union

-of some elements in ¥,,x € A; = A, for some A, € ¥;. One can choose
@ sequence A,, 4,, ... in G so that 2 = () 4,,.

ProBLEM 2 (P 1050). If § is a compact ultrametric semigroup and F

is a finite subset, is F* 0-dimensional?

If Problem 2 has a positive solution, then Problem 1 has a positive

-8olution (the same proof as for Theorem 3).

1]
2]
3]
[4]
{6]
(6]

17]

COROLLARY. The interval [0, 1 /2] under real multiplication is a Z-image.
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