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Introduction. A covering theorem for a class of sets & asserts that every set
in € can be covered by a countable union of sets in some (somehow simpler)
class €'

In the theory of sets of uniqueness on the unit circle T the first result of this
kind is Piatetski-Shapiro’s theorem in [PS], which states that every closed set
of uniqueness can be covered by countably many closed sets in the class U,
consisting of those closed sets E = T for which there exists a sequence of
functions in A(T), vanishing on E, which converges to the function 1 in the
weak *-topology.

Recently, attention has been focused on such covering results for unique-
ness sets (%-sets) as well as extended uniqueness sets (% ,-sets) in an attempt to
overcome the difficulty of characterizing these sets, revealed by the theorem of
Solovay [S] (see also [KL] and Kaufman [Ka2]) that the sets

U=UnK(T) and Uyz=%,n K(T)

of closed %- and % ,-sets are coanalytic but not Borel subsets of the space K(T)
of closed subsets of T. Perhaps there is a simply characterizable (in particular,
Borel) class of U- (resp. U,-) sets such that every U- (resp. U,-) set is
a countable union of sets in this class.

In 1986, we proved such a covering result for U, namely that every closed
set of extended uniqueness can be written as a countable union of sets in the
so-called class Uy, consisting of those closed sets E for -which there is a > 0
such that, for every probability measure u on E,

lim|i(n)| > a.

Our original proof of this result has not been published and used a good deal
of descriptive set theory.
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Using our result and some more descriptive set theory, especially results
from [KLW] as well as a strengthening of the Kaufman—Solovay Theorem
due to Kaufman [Ka3], Debs and Saint Raymond [DStR] extended this to
Borel and even analytic sets in %,: Every analytic % ,-set can be covered by
countably many Uj-sets. This gives a complete description of analytic % ,-sets
and has several consequences in the theory of sets of uniqueness, like the
solution of the Category Problem (see [B1], and also [KL]): Every (extended)
uniqueness set with the property of Baire is of the first category in T.

In the first part of this paper, we give a direct new proof of these two
covering results, using only tools from functional analysis and a Baire
category-type argument. This direct approach has also the advantage to adapt
to the case of sets of uniqueness (as opposed to extended uniqueness), where the
situation is more complicated. The point here is that although Uy is a subclass
of U,, U] is not a subclass of U, by Korner’s Theorem on Helson sets of
multiplicity [K6]. In fact, in [DStR] Debs and Saint Raymond prove that
there is no family B < U which is Borel and forms a basis for U in the sense
that every U-set can be covered by countably many sets in B or, equivalently,
U = B,, which by definition is the o-ideal of closed sets generated by B. On the
other hand, Uy is Borel and a basis for U,. (We prove also in [KL] that if
B < U is such that U = B,, then there is an extension B, of Bwith B= B, nU
and (B,), = (U}),, ie., B, generates the o-ideal generated by U}, so that in
some sense the only way to improve the Piatetski-Shapiro basis U; n U for
U is to get a better basis for (U}), itself, not U.)

Despite these negative results, which prevent the descriptive set theoretic
approach of [DStR] to be used in the context of U- and U, -sets, the methods
developed in Section 1 allow us to extend, in the second part of the paper,
Piatetski-Shapiro’s result to analytic %-sets: Every analytic %-set, in fact every
analytic set which contains no closed set of multiplicity, can be covered by
countably many sets in U’;. We show moreover that this result is best possible:
The o-ideal (U}), = U7 is the least o-ideal of closed sets I with the property
that every G, set which contains no closed set of multiplicity can be covered by
countably many sets in I. Whereas U; was defined indirectly by weakening the
definition of U’, the subclass of closed sets of uniqueness consisting of those
E for which there is a sequence f, € A(T) of functions vanishing in an open
neighborhood (nbhd) of E which weak*-converges to 1, the above result gives
surprisingly an “intrinsic” characterization of the o-ideal U} in terms of U.
Another intrinsic characterization of U} in terms of U has been recently
obtained by Dougherty and Kechris [DK], who showed that U} consists of
exactly those closed sets within which, for some h, Hausdorff u,-measure
0 implies uniqueness.

Finally, we relate the class U] with questions of harmonic synthesis of
pseudomeasures. The class U7 can be characterized as consisting of those
closed sets which support no pseudofunction satisfying synthesis or, equivalently,
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those closed sets for which uniqueness holds for all trigonometric series
Y S(n)e™ with S (viewed as a pseudomeasure) satisfying synthesis. Extending
thlS definition to arbitrary subsets of T produces a new type of “uniqueness” set
7Y lying strictly between % and Uy (U&E £y Z %,). We show moreover that
every set which contains no closed set of multiplicity is also contained in %7,
ie., it is a set of “uniqueness” as far as trigonometric series satisfying synthesis
are concerned. (Whether it is actually a uniqueness set is the so-called Interior
Problem—see [B1] and [KL] — and remains open.) Combining this with
earlier results of Kechris and Louveau [KL] and independently Debs and
Saint Raymond [DStR], one has a further corollary on the Union Problem for
Borel %-sets. The union of countably many G;, #-sets is of uniqueness for
trigonometric series satisfying synthesis. So a possible counterexample to the
Union Problem for G, sets has to incorporate a construction of non-synthesis
sets (Malliavin’s Theorem, see [KS] or [GMcG]); in fact, even more, the
existence of sets in U|—U (Koérner’s Theorem [Ko&]).

In the sequel we use standard terminology and notation in harmonic
analysis; see, e.g., [KS], [GMcG] or [KL].

1. The case of U,sets. For every closed set E< T, let us denote,
respectively, by M(E), M *(E), PROB(E) the spaces of (complex) measures,
positive measures and probability measures supported by E

A measure ue M(T) is a Rajchman measure if

n . def —
A(m)—0, ie, R(u)=limli(n) =

We denote by & the set of Rajchman probability measures and for each ¢ > 0
by 4, the set

= {uePROB(T): R(y) < ¢},
so that
2= R,

e>0

A set Pc Tis an extended uniqueness set (a % ,-set) if, for every pe#,
u(P) = 0. Otherwise, P is called of restricted multiplicity (an # ,-set). As is
well-known, if P is analytic, this is equivalent to

uP)<1 for all peR

or to )
Vue M(T)(Y_ fi(n)e™ =0, Vt¢ P = u = 0).

In particular, an analytic set P is in %, iff every closed subset E of P is in %,
We denote by K(T) the space of closed subsets of T and we let -
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be the family of closed % ,-sets. Let also
My = ,n K(T).
Then for E€ K(T)
EeU,<PROB(E)nZ = Q.
We define a subclass Uy of U, by
EcUjy<>3e > 0(PROB(E)n %, = 9).

The family Uj is a Borel (in fact G;,) subset of K(T), equipped with the
standard Hausdorff metrjc under which it is compact. On the other hand, U, is
co-analytic but not Borel ([S], [Ka2]; see also [KL]).

1.1. THEOREM. The class U, is the g-ideal generated by Uy, i.e. every closed
set of extended uniqueness is a countable union of sets in Uy,

Proof. Let E€ K(T) be a set which cannot be covered by countabiy many
sets in Up. We want to show that E¢U,. Let F = E be defined by

xeF<xeE&VV [V (open)nbhd of x = E N V cannot be
covered by countably many setsin Uj].

The set F is closed and non-empty by the hypothesis on E. Moreover, for any
open V,

FnV#QO= FnV¢U,.
We show now that
R(F) = # n PROB(F)

is non-empty, a contradiction.
First we claim that for each ¢ > 0

R,(F) = #,n PROB(F)

is dense in PROB(F) equipped with the usual w*-topology for which it is
compact and metrizable. To see this, note that #,(F) is convex. Hence it is
enough to show that the Dirac measures J,, xeF, are in Q?E(F)“’*. Let V, be

a sequence of nbhds of x with diam(V,) >0 and (as V,n F ¢ Up) let

u,€ PROB(V,n F)
be in &,(F). Clearly,

w‘l

My =0

x

and we are done.

We construct now inductively a sequence {u,} in PROB(F) and an
increasing sequence {N,} of positive integers such that
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(*») If i<n and N; < |k| < N;;,, then
| (k) < 27771
Then if 4 is a w*-limit of a subsequence of {u,}, clearly
la(kl <2771 for k| = N;;
hence ue Z(F).
To construct {u,}, {N,} we choose pu, to satisfy (*) for i<n—1 and
(#+) VIk| = N, |3,(0) <27"7%,
For n =0, pick u,eZ,(f) with ¢ =27% and then N, so that

lio(k)l <27* for |kl = N,.

Suppose now that yq, ..., 4,, No, ..., N, have been defined satisfying (x)
and (*x). Let m be any number > N,. There are a measure u(m) and an integer
¢@(m) > m such that

(1) u(m) satisfies () for i< n—1;

(i) Ik{m)(] <2777 for N, <k <m;

(iii) [u(m)(k)] <27"7° for |k| = ¢(m).

To see this, note that the measure u, satisfies (i), (ii), so by the density of
R,(F), with ¢ = 27", we can find u(m)e R, (F) satisfying (i), (ii). Then choose
¢(m) to make (iii) true.

Define then a sequence {v;} in PROB(f) and {m;} by

vo = u(N,), my=¢(N,)
and
Vier = plmy),  mj,q = @(m)).
Let for each k

Then 0, satisfies () for i <n—1 and
6,(m) <275  for |m| > m,.
If now N,<|m <m,, there is at most one j (the one for which
m; < |m| < m;, ) such that [V{m)| >27""3; hence
k-27""341
k+1

Thus if we choose k large enough and let u,.; = 6,, N, = m,, we also get (%)
for i =n and (x*). This completes the proof.
This result leads to some kind of description of the o-ideal of closed

extended uniqueness sets, similar to the classical case of countable closed sets:
Define

10, (m)| <

ME={EeK(T): Vopen V (VNE # @=Vn E¢ Uyp)},
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which, by the preceding theorem, is equal to
{E€K(T): Vopen V(VNE #D0=VnE¢U,)}.

Then any closed set E can be uniquely. decomposed into a kernel E*, the largest
M3} set contained in E, and E — E* which is a countable union of Uj-sets. And
E* can be obtained by a derivation process, similar to the Cantor-Bendixson
one: for each closed set F, let

d(F)={xeF: V open V(xe V= Vn F ¢ Uy)}.
Define inductively E§’ by

EQ?=E, E§*D=d(EP)
and
E = N E for limit A.
a<i
Then, for some « < w,, E§*! = EQ = E*. And as E* =@ iff E€ U, this gives
a countable “intrinsic” testing process for membership in U,,.

Note that although U, is complicated, i.e., co-analytic but not Borel, the
class M§ (which is easily the same as the class of supports of Rajchman
measures) is Borel, in fact F,; This can be used to show for example that the
perfect symmetric sets E,, ,, . of varying ratios of dissection, which are in U,
form a Borel (G;,) set in K(T), suggesting perhaps the possibility of an
“explicit” characterization of these sets (see [KL]).

We go now to the case of analytic sets in %, i.e., the Debs—-Saint Raymond
Theorem. For simplicity let us consider first the case of G; sets.

1.2. THEOREM (Debs and Saint Raymond [DStR]). Let H be a G set in %,
Then H can be covered by countably many sets in U, (and hence in U, by
Theorem 1.1). '

Equivalently, if H is a G; set which is dense in a non-empty M§-set E, then
H is not a U,-set.

Proof. The first assertion implies the second by the Baire Category
Theorem and the fact that U -sets are nowhere dense in M§-sets. Conversely, if
H is a G; %,-set and cannot be covered by countably many U ,-sets, the set

= {xeH: V open V (xe V=V n H cannot be covered
by countably many sets in U )}

is G; non-empty and E = H' is in M}, so that the second statement fails.
To prove the second assertion let

H={V,

¥, open dense in E. Since E € M§, we infer that #(E) is w*-dense in PROB(E)
(as in the proof of Theorem 1.1). Let

R(V,) = R(E) n {u: supp(p) = V,}.
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Since V, is dense in E, #(V,)-is w*-dense in PROB(E), so #(V,) is dense in
PF N PROB(E)(= #(E)) for the weak topology of PF (= the space of
pseudofunctions), hence for the norm topology of PF by Mazur’s Theorem,

since #(V,) is convex.
Let u,e #(E). As #(V,) is dense in #(E), we can find Wle.pen in E with

WiV, meRW) and |luy—poller <271
Now W, e M§ and V, n W, is open dense in it, so we can find W, open in E with
W,seVinW,, ueR(W, and ' ety — taller < 272,

etc. So we construct a Cauchy sequence in PF of probability measures u, and
a decreasing sequence W, of open sets in E with

AW, =(\W,=sH and p,eR(W,).
So u, > pueR, u#0, supp () = (W, < H, hence H¢%,.

1.3. COROLLARY (Debs and Saint Raymond [DStR]). Let EeM}. If A< E
has the property of Baire in E and A€, then A is of the first category in E. In
particular, evefy A < T with the property of Baire which is in %, is of the first
category.

Proof. Since A has the property of Baire in E, A = Hu P with He G;and
P meager in E. Since He%,, H can be covered by countably many (closed)
U,-sets, which, since Ee M8§, are nowhere dense in E. Thus H is meager in E,
and so is A.

1.4. CoROLLARY (Menshov, see [B2]). There is a (closed) M,-set of
(Lebesgue) measure 0.

Proof. Let G = T be a dense G, set of measure 0. Then G ¢ %, so there is
a closed E< G, EeM,,

1.5. COROLLARY (Ivashev-Musatov [IM], Kaufman [Kal]). Let Ee M,. Let
h: [0, o0) — [0, o0) be non-decreasing with h(0+) = 0, h(t) > O for t > 0. Then
there is a closed set F < E, Fe M, of h-Hausdorff measure 0.

Proof. We can assume that Ee M§, E # . Let {x,} be dense in E and
choose, for each n, open intervals Iy with

x,€I7 and Y h(I7) < 1/n.

Then
H=N\EnUID
is dense G, in E and of h-Hausdorff measure 0. But H ¢ %, hence H contains
Fe M, which is still of h-Hausdorff measure 0.
1.6. CorOLLARY (Kechris and Louveau [KL]). Let Ee M, and let y be
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a continuous capacity on T (i.e., a capacity such that y(K U {x}) = y(K) for all
KeK(T), xeT). Then there is a closed F < E in M, with y(F)=0.

Proof. As before, we may assume that E e M} and it is enough to construct
a G, set H dense in E with y(H) = 0. For that we construct as before open
intervals I with

yIRu..uIM<1/n for all m,

using the continuity of y.

1.7. CorOLLARY (Lyons [L]). The set W*({q*}) of non-normal numbers to the
base q =2 is in M.

Proof. W*({¢*}) is the set of xe[0,2r] for which the sequence
q¢*x (mod2r) is not uniformly distributed, i.e., by Weyl’s Criterion

1
lim— > exp{ig“mx} #0 for some meZ, m #0.
v Ny

_ 1}.
The set P is comeager in T and P = W*({q"}).
We prove now the extension of Theorem 1.2 to analytic sets.

1.8. THEOREM (Debs and Saint Raymond [DStR]). Let A be an analytic set
in U,. Then A can be covered by countably many sets in U, (and thus in Uy).

Proof. Assume this fails and let H = Tx 2N be G; with 4 = n(H), where
n denotes projection on T. Let U§" be the family of subsets of T which can be
covered by countably many sets in U,. Let

H ={xeH: Vopen Vin Tx2" (xeV=n(Vn H)¢ U")}.
Then H'eG, and, since 4¢Ug", we have H' # &. Moreover, H' satisfies
Vopen V(VAH #Q=>n(VnH)¢U,).

For F closed in Tx 2N, let us say that F is “in M§” if, for all non-empty open
Vin F,nVeM,. Thus E = H' is “in M§”, and so is any V for V open non-empty
in E. Note now that if F is “in M§” and V< F is dense open in F, then

R"(F) = {ueR(nF): IK = V (K closed and supp (n) < R(K))}

Let
P= {xe[O, 27]: lim
N

1 N
= 2. exp{igx}
N kgl

is, as in the proof of Theorem 1.2, w*-dense in PROB(rn(F)) and convex, hence
norm-dense in #(n(F)). Thus the same argument as in Theorem 1.2 allows us
to build a measure pe 2(n(E)) and a closed set K = H' with supp(u) < n(H’).
Then n(H)¢%U,, so A¢U,.

The argument behind Theorems 1.2 and 1.8 looks very much like a Baire
category argument. In fact, a category-type largeness property of the class of
Rajchman measures can be extracted from it.
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Let us say that for E€e K(T) a set X < PROB(E) is almost comeager if for
any non-empty open set ¥ < PROB(E) and any sequence {V,} of open dense in
V convex sets in PROB(E) we have

Xn(\V,)#9.

The set of Rajchman probability measures on T is meager in PROB(T). But
we have

1.9. THEOREM. Let E€ K(T) be non-empty in M§. Then
R(E) = # ~PROB(E)

is almost comeager in PROB(E).

Proof. Fix @ # V<= PROB(E), V convex open. Let also G = V be convex,
open and dense in V, and therefore in Q = V™. By the proof of Theorem 1.1,
2 N PROB(E) is dense in PROB(E), so Z; = Zn G is dense in Q and of
course convex. Now £, =ZnQ is a norm-closed subset of PF and

A% NPF=QnPF =R,

Since the weak-closure % N PF of & in PF is the same as its norm-closure, it
follows that £, is norm-dense in #,,, and since #; = G N A,y it is clearly open
in #, with its strong topology.

To summarize: For every non-empty open convex V< PROB(E) and every
open convex G < V which is dense in ¥, #; is open dense in %, in the
norm-topology. So if V# & is open in PROB(E) and V, are open dense in
V and convex, then assuming without loss of generality that V itself is convex
(as it surely contains a non-empty open convex subset) we have, by the Baire
Category Theorem in £, which being closed in PF is Polish,

Ny, =(\V)nRe# 9D
and we are done. " "

Note that Theorem 1.9 also easily implies Theorem 1.2: If the Vs are
decreasing open and dense in E, Ee M§, E # O, then

-V = {uePROB(E): u(V,) > 3}

is dense open and convex in PROB(E), so Theorem 1.9 gives a Rajchman
probability measure p with

we\VE e, w((1V)=4,
so that " "
N\V.¢,.

2. Results on U and U,. A set P= T is a set of uniqueness if every
trigonometric series converging to 0 off P is identically 0. Denote by # the class
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of such sets and by U = % n K(T) the class of closed %-sets. These can be also
characterized as the closed sets E = T for which the ideal

J(E) = {fe A(T): f vanishes in a nbhd of E}
is w*-dense in A(T) for the topology of duality with PF. We also let
U™={P<T VEeK(T)(E < P=EeU)}

so that # < U™ S ¥, Finally, #, M are the classes of sets of multiplicity and
closed sets of multiplicity, respectively.
Let, for Ee K(T),

I(E) = {fe A(T): f=0o0n E}.

A set E€K(T) is a U,-set if I(E) is w*-dense in A(T), and a U,-set if I(E) is
w*-sequentially dense in A(T), i.e, for some sequence {f,} in I(E),

1. 51.

We will also let

Ut =(U,), =(UY),
be the o-ideal of closed sets generated by U, or, equivalently, U} by
Piatetski-Shapiro’s Theorem in [PS]. Finally, let

* (=(UY)™ = (UD™)
be the o-ideal of sets generated by U, or Uj, ie,

U ={P<T: I{E}eU, (P<|JE)}.

For a closed set E, we also let
PM(E) = J(E)* = {SePM: S is supported by E},
where PM is the space of pseudomeasures and
N(E) = I(E)* = {SePM: Vfel(E) ({f, S) = 0)}.

Clearly, M(E) = N(E) = PM(E) and M (E) is w*-dense in N(E) for the topology
of duality with A(T).

Piatetski-Shapiro’s Theorem in [PS] implies, in particular, that U < (U)),.
Using the ideas of the first section we can extend this to X}-sets.

2.1. THEOREM. Let P < T be X1. If Pe U™ (in particular, if P € %), then P can
be covered by countably many sets in U}, ie, PeU (= (Uy)™).

We will prove this result in the case P € G,, the general case being handled
by a projection argument, as in Theorem 1.8.

Let us denote by M3 the class of E e K(T) such that, for every non-empty
open set Vin E, V¢ U,. As usual, Theorem 2.1 is reduced to the following
equivalent:
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2.2. THEOREM. If Ee M} and H < E is G; dense in E, then H contains a set in
M (i. e, H¢U™).
We will need the following standard lemma:

23. LEMMA. Let xe T, {V,} open nbhds of x with diam(V,) - 0. Let {S,} be
pseudomeasures supported by V, with

S0 =1 and sup|lS,lley < co.

Then S, b 0,.

Proof. Let fe A(T) and & > O be given. Let f(t) = f(t)—f(x). Then, since
f(x) = 0, we can find a ge A(T) with ||g||, < £ and g = f in a nbhd of x, hence in
a nbhd of ¥, for all large enough n. As S,e PM(V)), it follows that for all large
enough n

IKF, 821 = Kg, SOl < Ke  with K = sup|IS,llpm-

Since (f, S, = (f, §,>—<{, 8.), we are done.
Let V be open in Ee€ K(T). We define

V={SePF: 3KeK(T) [K = V& Se N(K)]}.

2.4. LEMMA. Suppose that Ee M% and V< E is open dense in E. Then V is
w*-dense in N(E).

Proof. It is enough to show that V™ contains the measures with finite
support in E. Since V is a subspace, it is enough to consider only Dirac
measures J,, x€ E, and since V is dense in E, we can assume that xe V. Let V,
be open nbhds of x in E with diam(V,) -0 and V, = V. As Ee M&, there is

S,eN(V)NnPF with S, (0)=1 and ||S,|lpm < 2.
By Lemma 2.3,

$,5 5,

and we are done.

In particular, for E, V as in the lemma, V is dense in N(E) N PF for the
weak-topology of PF, hence in the norm-topology by Mazur’s Theorem. We
can proceed now exactly as in the proof of Theorem 1.2.

Remark. Colella [C] has also independently shown that if E€ M% and E,
is an increasing sequence of closed subsets of E with E,e M% and | ) E, dense in

E, then for any Se€PF n N(E) there are
S,ePFNN(E,) with ||S,—S|[pym —O.

We present now some applications.
Combining Theorem 2.2 with a result of Debs and Saint Raymond in
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[DStR] we obtain first the following characterization of M% and U¥ in terms
of U:

2.5. COROLLARY. Let E€ K(T). Then the following are equivalent:

(1) Ee M§.

(i) Every non-meager G subset of E is not in U™,

In particular, U¥ can be characterized as the least a-ideal of closed sets I such
that any G; set in U™ can be covered by countably many sets in I.

Proof. (i) =>(ii) is a restatement of Theorem 2.2: If H is non-meager G; in
E, then H contains a non-empty set V open in E, and Vis in M¥ too, so that
HANV, and hence H, is not in U'™.

(ii))=(1). In [DStR], the authors show that if Fe U}, then F contains
a dense G, in U'™ Now, if E¢M%, then there is @ # V open in E with
F = VeUj}, so that there is G dense G, in F with Ge U™ Since G is
a non-meager G, in E, we are done.

For the last assertion, first note that U7 satisfies this property by Theorem
2.1. If I is now any o-ideal with this property and EeUf—1I, towards
a contradiction, there is F # @, Fe U, which is I-perfect, i.c., V¢I for all
non-empty Vopen in F. Then subsets of F in I are nowhere dense in F, and so
all G, sets in U™ which are contained in F are meager in F. This contradicts
the result of Debs and Saint Raymond.

We also have analogs of Corollaries 1.4-1.6 with the same proofs.

2.6. COROLLARY. Let E¢ U%. Let y be a continuous capacity or a Hausdorff
measure. Then there is F < E, Fe M, with y(F) = 0.

It is not known if in the conclusion of this corollary one can get F¢ U%.
However, by a recent result of Dougherty and Kechris [DK] one cannot
assume only that Ee M. In fact, they show that the following is true, thereby
giving a different intrinsic characterization of U¥ in terms of U: For Ee K(T),

EeUf = there is a Hausdorff measure u, on T such that,
for all Fc E, FeK(T), u,(F)=0=FeU.

Our next applications relate Uf to the Union and Interior Problems for
sets of uniqueness, and problems of synthesis of pseudomeasures. (The Union
Problem is the question of whether finite or countable unions of Borel sets in
9 are in % and the Interior Problem is the question of whether (G,,) .#-sets
contain M-sets. The Union Problem is open even for two G; sets and the
Interior Problem is open even for G, .#-sets.)

Let ) S(n)e™ be a non-zero trigonometric series which converges to
0 almost é¢verywhere, so that in particular SePF. Let

RNg={xeT: ) S(ne™ is unbounded}

In|]<N

be the so-called reduced nucleus of S. It is an old problem of Bary [B1] to find
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out if RNy is an .#-set. Recall that a pseudomeasure S satisfies synthesis if

fel(supp(8)) = (f, $> = 0.

2.7. COROLLARY. The reduced nucleus of any S which satisfies synthesis is an
M-set, in fact it contains an M-set.

Proof. If SePF satisfies synthesis, then supp(S)e M{. But RNy is a dense
G; in supp(S), so we are done by Theorem 2.2.

2.8. COROLLARY. Let G be a set in U™ Then there is no non-zero
trigonometric series Y S(n)e'™ with S satisfying synthesis such that

Y S(n)e™* =0, Vx¢G.
In particular, if G,e U™, G,€ZX% (= G,,), then there is no such S with

Y. S(n)e™ =0, Vx¢|)G,.

Proof. If such an S exists, then RNg < G and RNg¢U™ by Corollary 2.7,
so G¢ U™, For the second conclusion use the fact that U™ is closed under
countable unions of G;, sets (see [KL] and [DStR]).

This corollary says that any possible negative solution of the Union
Problem for G, sets must incorporate a construction of non-synthesis sets, in
fact sets in U —U (Korner’s Theorem [K6]).

The concept of pseudomeasures satisfying synthesis is actually very closely
connected to the.concept of U¥-set. To see this we need the following lemma:

29. LEeMMA. Let E€ K(T). Then the following are equivalent:
(i) Ee M%.
(i) E = supp(S), where S e PF satisfies synthesis.

Proof. The direction (ii) = (i) is easy. So, conversely, let E€ M§. Let {V,}
enumerate all basic open sets with V,nE # &. Then for each n there is
a non-zero pseudofunction in N(E) with support contained in V,. We will define
inductively on n a pseudofunction S, € N(E) with ||S,|lpm = 1, a function f,€ A
with support contained in V, and a sequence of positive numbers &) ,, e% 5, ...
as follows: For n =0, let S, PF be such that

ISollem = 1, supp(So) =V, and  S,e N(E).
Let f,e A be such that
supp(fo) € Vo and <[, S¢> # 0.

Choose positive &, e, ... so that

||fo||,4( Z 35»?)) < K fo» So)l-

mz21
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Then for every S;, S5, ... with ||S.llem = 1 and every 0 < 6, < &2 we have
(fos 2 OmSm) #0.
m=1
Let now 6, = ¢ and find S,ePF, fe 4 such that
ISilem =1, supp(S)<=V,, S,eN(E), supp(fi)cV,
and
<fl’ S0+51Sl> '-’é 0

Choose positive &5, e{V, ... so that
"fl”A( Z 32)) <[Kfis So+90:SI.
m=2

Then for every S5, S5, ... with ||S,,|/lpm = 1 and every 0 <4, < & we have

<f1 H S0+6lsl + Z 5,,,5;,.) :)é 0

m22

Let now 8, = min{c%’, ¢} and proceed as before with V,, etc. Letting now, in
general,

8, = min{e?, &b, ..., gr~ D},
we have ) d, <) & < oo, and thus if

S=S,+Y 48,5,

n=1

then SePF and Se N(E). Finally, supp(S) = E, since {(f,, S) # 0 for all n.
We have now

2.10. COrROLLARY. Let E€ K(T). Then the following are equivalent:
(i) E€eUt.
(i) E supports no non-zero pseudofunction which satisfies synthesis.
(iii) Every trigonometric series ) S(n)e"™ for which S satisfies synthesis and

Y S(m)e™ =0, Vx¢E,
is identically O.

Thus Ut appears as an interesting analog of U and U,. Moreover, U¥ has
a natural extension to arbitrary subsets of T, namely if

Pet <>every trigonometric series ) S(n)e™ for which S satisfies
synthesis and ) S(n)e™ =0, Vx¢E, is identically 0,

then %% n K(T) = U%. Note: that, by Corollary 2.8, U™ < q*.

A very interesting question is whether the conclusion of Theorem 2.1 goes
through only under the hypothesis that Pe(U¥)™, thus obtaining a full
extension of the Piatetski-Shapiro Theorem (U, < (UY),). If so, then one would

have for X}-sets
Ut = U™ = (U™
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We finish by using the preceding ideas to provide a new proof of the
Piatetski-Shapiro Theorem itself.

2.11. THEOREM (Piatetski-Shapiro [PS]). Every U ,-set is a countable union of
Uj-sets.

Proof. As usual it is enough to prove that if @ # Ee K(T) is such that for
all non-empty open Vin E, V¢ U, then EeM,. For ¢ > 0, let

NYE) = {Se N(E): lim|S(k)| < &}.

First note that N°(E) is w*-dense in N(E): To see this let
k

p=Y ad,, xe€E,

i=1

be a finite support measure. Let x;e Vi, Vi open in E, diam(V?) — 0. Choose

then
S,eN(V;)  with R(S;) < (¢/k)max o], [IShllem < 2, S»(0) = 1.

Then

. w*
1
Sn 2 0o

and so if S, =) a,S;, we have

w*

R(S)<e and §,-pu.
Next we need a lemma.
2.12. LEMMA. Suppose that
C < PM* = {SePM: iim|S(k)| < &}

is convex and TeC"". Then there is a sequence T,eC,

TS5 T  with | Tyllem < I Tllpw +e.

Proof. Let
CV = {SePM: S is a w*-limit of a sequence in C}.

If we can prove the lemma for Te C'"), we are done, since this implies that C*)
is closed under w*-limits of sequences, hence C'¥ = C*'. So let Te C'V and let
S,€C be a sequence w*-converging to T, with say ||S,|lpm < M. Given any
N and 6 <¢ we will find SeC with

|[T(m)—S(m)| < o6 for Im| < N and  ||S|lem < || Tllem +&-

For this note that for p > N there are Se C with ||S|lpy < M and g > p such
that
|T(m)—S(m)| <6 for Im|<p and |S(m)| <& for |m = q.

By iterating and averaging as in the proof of Theorem 1.1 we are done.
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Returning to the proof of Theorem 2.11, we see that for any Se N (E) with
[ISllpm < « there is a sequence T,e N*(E) with

T5S and  ||T|lem < 0+e.

We define then inductively S,, S,, ...in N(E),and 0 < n, < n, < ..., such that
IS llem < 1, IS llem < 1+ ) 277 for k> 2,

i<k
IS,(n)) <27 for |n|>n, and k=i and S,0)>3.
Then if {S,} is a. w*-converging subsequence, say with limit S, we have
SeN(E), S # 9, SePF, so that EeM,.

To define the S, n;, choose first S, e NY2(E) with ||S,|lpm < 1 and S,(0) > 4,
and then n, with |S(n)| < % for |n| > n,. By using the above, for each m > n,
there are m’ > m and Se N(E) with

ISllem < 1+%,  [S(k)| <3 for n, < |kl <m,
IS(k)| <3 for [k >m' and S(0) > 3.
Iterating and averaging as before, we get S,, and then n,, etc.
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