COLLOQUIUM MATHEMATICUM

VOL. XLII 1980 FASC. 2

ON SOME ADJUNCTIONS BETWEEN THE CATEGORIES
OF ADJUNCTION-MORPHISMS AND MONAD-MORPHISMS

BY

ANDRZEJ KURPIEL axp JOZEF SELOMINSKI (TORUN)

In this paper we consider categories whose objects are functors
between the categories over a universe U. Following [3] and [6], we call
them 2-categories with respect to U. The category 2-CAT (U), which con-
sists of all categories of functors with natural transformations between
the categories over U, i.e. objects of CAT(U), may be regarded as an
example of 2-category. Another example is 2-Cat (U), consisting of all
functor categories with natural transformations between the small cate-
gories over U, i.e. objects of Cat(U). These two 2-categories are called
Jundamental with respect to U.

If A is any 2-category with respect to U (the symbol U will be omitted
whenever the universe is fixed), then Adj(4) (respectively, Adj“(4))
is the category whose objects are adjoint pairs
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g

of functors with f, g € A, with morphisms defined as in the category
dg,1)4 (respectively, d; ;) A), given in [5]. The objects of d,,,, A (respec-
tively, d, ;, 4) are all pairs

i
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of functors in 4. Thus there is a forgetful functor from Adj(4) (respec-
tively, Adj™ (4)) to d, ;) A (respectively, d ;) A). There is also a functor
F: Adj(A) —Mon(A) (respectively, F: Adj"(A) —Mon™(4)) defined
in a natural way to the category of monads in A. We do not know whether
there exists any functor adjoint to F (respectively, F*). In particular,
we do not decide whether the functor K: Mon(A4) — Adj(A) (respectively,
K*: Mon*(A4) — Adj"(4)), defined in 1.6 for A = 2-CAT(U), is adjoint
to F (respectively, F©).
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The purpose of this paper is to find the adjoint functors between
categories in 2-Adj(4) (respectively, 2-Adj©(4)) and 2-Mon(A4) (respec-
tively, 2-Mon™(A4)). These 2-categories were defined in [6]. We remind
their definitions in Section 1. We determine the adjoint functors between
categories in 2-Adj(4) (respectively, 2-Adj*(4)) and 2-Mon(A4) (respec-
tively, 2-Mon™* (4)) in Section 2 in Theorem 2.1 (respectively, Theorem 2.2)
in the special case A = 2-CAT (U), leaving the general problem of finding
such pairs of adjoint functors as an open question. (P 1178)

Another purpose of the paper is to determine isomorphisms between
the categories in 2-Mon™(4) and 2-Kan(A|A) (the category Kan(4|A4)
is due to Dubuc [2], and 2-Kan(4|A) is obtained from Kan(A4|4) by
using a scheme from [5]). We generalize a result of Alagic [1] and obtain,
in Section 3, some characterization of so-called monadic functors.

The paper is a continuation of paper [5] by the second-named author.
The reader is assumed to be familiar with that paper.

1. Preliminaries.

1.1. Let U be a fixed universe. A 2-category A with respect to U
is a category A, (called the local disorete category of A) together with
a family {A(X, Y): X, Y are objects of A,} of categories A(X, Y)
such that

(i) 4, is a subcategory of CAT(U) or 4, is an object of CAT(U);

(ii) for any objects X, ¥ in A, the objects of A(X, Y) are all mor-
phisms in 4, from X to ¥, and for any objects f, g in A(X, Y) the set
of all morphisms in 4 (X, Y) from f to ¢ is a subset of U;

(iii) for all objects X, Y, Z in A, the rules of composition

AX, Y)x A(Y,2) 2=°%YZ, 4(X,Z)

are associative functors which are unitary in all variables and agree with
composition in 4, on objects.

A 2-category A with respect to U is said to be small (or over U) pro-
vided A, is an object of CAT(U) and A(X, Y) is an object of Cat(U)
for any objects X, Y in A,. Let A be a 2-category. Then, for all objects
X,Zin Ay, 1% is the unit with respect to oy x 7 and oz x x. The compo-
sition o from (iii) is said to be strong in A, and the value of o (a, f) is denoted
by foa or by fa. For all objects X, Y in A, the composition in 4 (X, Y)
is said to be weak in A and is denoted by -. The objects and morphisms
of A, are called 0-cells and 1-cells (or functors), respectively, in A.

1.2. Let A be any 2-category with respect to U. By [5], the objects
of the category d, , A (respectively, d ,, A) are all pairs (f, g) of 1-cells
in A with codomf = domg. The morphisms in d,, A (respectively,
dis,54) from (f: X > X', g: X' > X") to (f: Y—>Y,q¢: Y ->Y")



CATEGORIES OF MORPHISMS 218

are all pairs ({By, hy, 91>, <Ay, hs, 5)) such that

x-x- % x

o o o

are diagrams in A, where | is | (respectively, 1) for d, ,) A (respectively,
d(S,S) .A.), and
1 1
"ll o l"ﬂ and "ll ot l"*
—>. —
r s

are written instead of 2-cells (i.e. morphisms between 1-cells)

@: hof —>f'hy  and  @: f'hy — hyof,
respectively, in A,
The identity defined by the object (f: X - X', g: X' - X"') is of
the form ({X, X', />,<X’, X", ¢>), and the composition of morphisms
in d; ) A and dg, A is defined by the formula

((h;! h;7 ‘P;>1 <h;’ hs’n ?’;))((hl’ hsy 91>, <hgy hg,y @5))
= ((h;hn h;hz’ ?’;D Py <h;hu h;ha’ 'P;D P2)))

where, for ¢ =1, 2,
’ ‘P;ht'h;H% for d(l,l)A1
?:09; =

he@e-phy  for digy) A.

By [5], the category d,, ) A (respectively, d; ;4) is the local discrete
category of a 2-category 2-d,, A (respectively, 2-d,,A) such that for
any objects @ = (f,g) and &' = (f',¢') in d;,,) A (respectively, d,) 4)
the morphisms in the category 2-d, ,, 4 (@, @’) (respectively, 2-dy ;) 4 (8, a'))
from (<hy, By @13, CBay hay @4)) to (<hy,y gy 1), <h;7 h;r 'P;)) are all pairs
(Kay B>y <B, D) of 2-cells

az by > by,  Brhy—>hy,  yihy—>hy
in A such that
fag =g, 989 =079
and, respectively,

Bf o1 =1 f'ay, yg-9s =@2g'B.

The composition of morphisms in these categories is given by the
formula

(Kaxy Br)y <Brs ¥10) (a, BD, <B,¥)) = (Kay-a,y BBy <18y 71°M).
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The strong composition o in 2-d; )4 (¢ =1, 3) is defined by
(Ka's B'>5 <B'y ¥ >)o(Ka, B, <By D) = ({a'a, f'8>, <B'B, ¥'P)).

1.3. Let A be any 2-category with respect to U. Following [5], we

define
dA = pl‘l d(l,l)A, d‘_A = 'pl']_ d(3'3)A,

2‘dA = pl'l 2'd(1'1)A’ 2'd<~A = prl 2-d(3,3)A ¢

By omitting the symbols concerning the second axis in the defini-
tions of the categories on the right-hand side (see 1.2), we obtain the
categories on the left-hand side of the above equalities.

A monad in A is any 4-tuple T = (X, T, n, u) consisting of a 1-cell
FT=T:X—>Xin A and 2-cells #: X —T and u: T* - T in A such
that

pTu =p-pul and upTnp=pnT ="1T.

Let T =<X,T,nu)and T' =<(X', T, %', 4> be two monads in 4.
Following [6], a monad morphism (respectively, inverse monad morphism)
from T to 7' is any morphism <h,, hy, ¢,> in dA (respectively, d“A)
from F'T to F'T' such that

hy = hy, N'hy =@y by,  @1hp = p'hyT'p -, T
and, respectively,
hy =hy, b =@in'hy, @y p'hy = by, T T'py.

The composition of monad morphisms (respectively, inverse monad
morphisms) in 4, which agrees with the composition in dA (respectively,
d"A), is a monad morphism (respectively, inverse monad morphism).
Thus we obtain the monad category Mon(A) (respectively, Mon* (4)),
given in [5], whose objects and morphisms are monads and monad mor-
phisms (respectively, inverse monad morphisms)in 4. Mon(A) and Mon™ (4)
are the local discrete categories of 2-categories 2-Mon(4) and 2-Mon™ (A4)
such that for any monads T', T” in A the category 2-Mon (4)(T', T') (respec-
tively, 2-Mon™ (4) (T', T")) is a subcategory of the category 2-dA (F'T, F'T’)
(respectively, 2-d“A(F'T, F'T’')) determined by all monad morphisms
(respectively, inverse monad morphisms) from 7' to T and 2-cells of the form
{a, B> = a with a = B. The strong compositions in 2-Mon(4) (respectively,
2-Mon™ (4)) agree with the strong compositions in 2-d A (respectively,2-d“A).

The category A|A is a subcategory of dA defined by all objects and
all morphisms <{h,, hy, ) with ¢ = id. The category Kan(4}|A) is a full
subcategory of A|A determined by all objects g having the right Kan
extension of g along g which is preserved by 1-cells (see [2] and [5]).
Kan(A}4) is a local discrete category of the 2-category 2-Kan(A4|A)
such that for any objects g and g’ the category 2-Kan(A|A)(g, ¢') is the
full subcategory of 2-dA (g, g’') determined by all morphisms in Kan(4|A4)
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from g to ¢g’. The strong compositions in 2-Kan(4]A) agree with the
strong compositions in 2-dA.

1.4. Let A be any 2-category with respect to U. An adjoint pair
of 1-cells in A is any pair

i 4
X=—=X
g

of 1-cells in A for which there are 2-cells : X — gf, ¢: fg - X’ in A with
effn=f and geng =g.
X é X' is an adjoint pair in A, then it is denoted by {f, g, 1, &).

g
Let @ = {f, g, 1, &) be any adjoint pair in A. Then G'a = (f, g) may be
considered as an object of the category d, A (respectively, dg,, 4).
An adjunction morphism (respectively, inverse adjunction morphism)
from an adjoint paira = {(f, g, %, &) to an adjoint pair @’ = {f’, ¢’, %', &>
in 4 is any morphism in d; ,) A (respectively, d ) A) of the form

(Km, &, B>, <k,m, a)): G'a —~G'a’

such that

(1) ke =e'k-fla-fg and n'm = g'f-af -my
and, respectively,

(1) ek =ke-fg-f'a and mn =af-g'f-n'm.

¥ ({(m, k&, B, <k, m, a)) is an adjunction morphism (respectively,
inverse adjunction morphism) in A, then it may briefly be denoted by
{m, k, B, a). The composition of adjunction morphisms (respectively, in-
verse adjunction morphisms) in A agrees with the composition of morphisms
in d; ;) A (respectively, d sy A). Consider the composition of adjunction
morphisms
Q =<m', ¥, By a'><{my k, B, a) = (m'm, k'k, p'm k', a'k-m’a).
Then by (1) we have
sllklk .fll(alk .mla) R (ﬂlm . klﬂ)g _— ellklk .fllalk . ﬂla . klﬂg
=k (e'k-f'a-Bg) = k'ke
and
g (B'm-¥'p)-(a'k-m'a)f-m'mn = g"f'm-a’f-m'af-m'mny
= (9"B-a'f'-m'n')m = n"'m'm,
and thus @ is an adjunction morphism. The identity <X, X’, f, g> defined
by an adjoint pair <{f, g, 5, &) is an adjunction morphism. In an analogous

way we prove that the composition of inverse adjunction morphisms as
well as the identity are inverse adjunction morphisms. Hence the adjoint
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Ppairs in A, treated as objects, with adjunction morphisms (respectivelys
inverse adjunction morphisms) considered as morphisms, define the cate-
gory Adj(A) (respectively, Adj<(4)). Now

G': Adj(4) —~d,,) 4
and, respectively,

G': AdjT(4) > d, A

is a forgetful functor. Moreover, Adj(A) (respectively, Adj“(A4)) is the
local discrete category of 2-Adj(A) (respectively, 2-Adj“(4)) such that
2-Adj(A)(a,a’) (respectively, 2-Adj“(4)(a,a’)) is a subcategory of
2-d,,, A (G'a,Ga’) (respectively, 2-d,, 4(G'a,G'a)) whose objects are
adjunction morphisms (respectively, inverse adjunction morphisms) and
morphisms are of the form ({r, o), (s, 7)) = {7, 0), where @ and a’ are
any adjoint pairs in A. The strong compositions in 2-Adj(A) (respectively,
2-Adj" (4)) agree with the strong compositions in 2-d,,) A (respectively,
2-dy4A). By 1.2, the morphisms from {(m, %, f,a) to {(m’,¥’,f’,a’)
in the category 2-Adj(A)(a,a’) (respectively, 2-Adj“(4)(e,a’)) with
a={f,g,7,¢ and &’ =f' g, 7', ¢’y are precisely all pairs <, o) of
2-cells 7: m —m' and o: ¥ - k' in A such that

(2) gocca=a-tg and fv-fp=p"of
and, respectively,
(27%) tgra =a'-g'c and of B =g f'.

Remark. The adjunction categories Adj(4) introduced here differ
from the categories sqAdj(A) determined by the adjoint squares in [3]
by Gray. In general, there is no forgetful functor from sqAdj(4) to either
Adj(A) or Adj©(4). In general, there is also no morphism determined
by an adjoint square in either Adj(4) or Adj™(4).

1.5. Let A be any 2-category with respect to U. The mappings

frg,n,8 X, ofyn, 9¢f>

l(m.k.ﬁ.a) . l(m,ﬂ-an (respectively,(m,af-¢'8))
f'y9'y7'y &) <Y, 9f v, g'sf")
define a functor
F: Adj(4) > Mon(A4)
and, respectively,
F*: Adj©(4) -Mon™ (4),
where
X % X and Y=Y
'
are adjoint pairs in A.
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The mappings

a=<fg9,n,8& (Fa,yg,ge>
l(mnkv B,a) > l‘(kvm’ a),(k,0'B-af))
& =<f,9'yn' e Fa',g',g'e"
define a functor
F'’: Adj(4) - Alm(4),

where Alm(4) is the monad algebra category of A defined in [5]. Moreover,
for any adjoint pair {f,g,7,&) =a in A, (Fa, ge) is the object of
Kan(4|A), since for any object {8, &) in the category 2-dA (X', —)(g, 9)
the pair <X’, & -8%) is the unique morphism of this category from ({8, &)
to (Fa, ge), i.e. (Fa, ge) is the right Kan extension of ¢ along g, which
preserves the 1-cells in A.

In general, we do not know any non-trivial functor from Mon(A4)
to Adj(4).

1.6. Let 4 be any 2-category with respect to a universe U. Consider
the categories Alm(4) and Mon,(4) defined in [6]. By Theorem 2.3 (IIa)
in [5] there is an adjunction

> =(H,L,n% " : Mon,(4) — Alm(4).

Let us denote by Kr(A4) the full subcategory of Alm(A) defined by
all objects of the form Hb, where b is any object in Mon,(4). Let x = 2V
(j =1,2,...,5) be any admissible sequence with respect to .4 and (1, 0)
given in 1.5.1 of [5]. By Kr(4)(x) we denote the subcategory of Kr(4)
defined by all objects and all morphisms in Alm(4)(x) (see [56]). The pairs

kr = (Mon,(4), Kr(4)> and kr, = (Mon,(4)(x), Kr(4)(%)),

where Mon, (4)(x) is defined as in [5], fulfil conditions (8,)-(8,) of Defini-
tion 2.2 in [5] and thus, by Theorem 2.3 (I) of that paper, we have the
adjunctions

Zyr = (Hypy Lyry Niry &4 : Mon, (4) — Kr(4)
and

Eln'x = <Hkrn7 Lkru’ Nkrx) 8krn>: MOD*(A)(’!) - K.I‘(.A)(%).

The category Mon,(A4)(x) is isomorphic to A(X, X’) if » = (X, T),
where X' = dom7, and to the category dA(—, X’') if x = (—, T), where
X' = domT. If A = 2-CAT(U), then 2., r) is the usual Kleisli adjunc-
tion defined by a monad T of a category X' (see [4]). The monads of the
above-given adjunctions are denoted by D,. and D,,,, respectively.

Let s = {(m, y> be any fixed monad morphism in 4 from T =
X'y Tyn, pp to T =X, T, ', p’>. With any object @ = (T, Tf, uf) in
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Kr(A)(—, T) we associate an object kr(s)(a) = <(T', T'mf, u'mf) in
Kr(4)(—, T'). To any morphism
Q =(Kn, X'y 9>, (n, T)): @ —~a' =T, If', pf’>
in Kr(4)(—,T) there corresponds a morphism @, in d4A(—, Y’) of the
form
w, Y', ¢: mf > T'mf’, where q = yf'n-me-mnf,

and thus, by the adjunction X, _ ), there is a unique morphism @;
from kr(s)(e) to kr(s)(a’), being the free extension of @,. We have

LQT = Leg ' Dy ;@1 = <X, X', p’'mf'){m, X', T'g)

=, X', p'mfn-T'q) = <n, Y',3(Q)),

where ~
(3) 8(Q) = p'mf'n-T"yf 'n-T'me-T'mnf.

The morphism Q7 is denoted by kr(s)(Q). Thus we have defined the

mappings
kr(s): Kr(4)(—,T) > Kr(4)(—, T

on objects and on morphisms. We prove that kr(s) preserves the compo-
sition. First, let us observe that for any above-given morphism @: @ —a’
there is exactly one morphism

Q' = ((m, Y', >, {n, T')): kr(s)(a) - kr(8)(a’)

such that
(4) tha = ha’Q’
where

he = (KX, m, yf>, <X, v)): & >kr(s)(a)
(it is a monad algebra morphism in 4). Indeed, if @’ and @, fulfil (4), then

Nempay Q' = <y X'y yon'mfy = <ny Xy p-yf -mnf)
=<{n, Y, Vl'wf'mﬂﬁ = n:W,T')LQL
and thus @’ = @;. Moreover,
(3) 8(Q)vf = yf'n-mp,
since
8(Q) - yf = p'mf'n-T'yf'n-T'mo-ynf = p'mf'n-T'pf'n-ypp-mTnf
= yf'n-m(p-puf) - mTnf = yf'n-me,

and thus @' = kr(s)(Q) is the unique morphism which fulfils (4). Hence

kr(s) preserves the composition, kr(s) is the functor from Kr(4)(—,T)
to Kr(4)(—,T’) and

(6) 8(Q.Q) = 8(Q.)n-2(Q)
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holds. Moreover,
kr(8)Hyy— 1) = Hyx(—, 1y,

where 7 is the functor from dA( —, X’) to dA( —, Y’) satisfying %f = mf
on objects, and Mm{n, X', ¢> = {n, Y’, mep> on morphisms. Indeed,
kr(8) Hyy—, ;<0 X', y) = kx(8)({n, X', Ty), {n, T))

= ({n, X', p'mf'n-T"pf n-T'mTy -T'myf>, <n,T"))

= ((n, X', w'mf'n-T'yf'n-T'mny>, <n,T"))

= ({ny X'y w'mf'n-T'pf 'n-T'mnf'n-T'my), (n, T'))

= ({n, X', p'mf'n-T'n'mf'n-T'my>, <{n, T"))

= ((n, X', T'my), {0, I")) = Hyp(e, 1<, X', my)

= Hyp(e,pym{n, X', p).

Let us observe that the kr(s)-images of both objects and morphisms
of Kr(4)(X,T) belong to the category Kr(4)(X,7’). Thus, for any
O-cell X in A, kr(s) may be regarded as a functor from Kr(4)(X,T)
to Kr(4A)(X,T’) such that
where : A(X, X’') - A(X, Y’') is the restriction of the above functor 7.

Let A be any 2-category with respect to U. Then we define 4’ as
2-Cat(U) if all categories in A (i.e. A, and A(X, Y) with X, Y in A4,)
are objects in Cat(U), and as 2-CAT(U) in the opposite case. Hence

(I) The mappings

T (- m)
l.-«n.» - l<ﬁ.kr(-).id.v°>
T 271::(-,1")

define a functor
K: Mon(4) - Adj(4’),
where
v' T, If, uf) = <X, X', 9f>: mTf - T'mf.

(IT) For each 0-cell X in 4 the mappings

T zkr(x,T)
i'- (m,y> +—> l(;bh(.)n‘dn v*)
T ! Ekr( x. T')

define a functor
Kx: Mon(A) - Adj(4’).

Now consider the adjunctions
Z(-,r) = <H(-,1'); L(—,T)’ N-,m)» 3(-,1')>3 dA(—,T) = Alm(4)(—,T)
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and

z'(x.a') = (H(x.r)y L(x,r), Nx, 1)) 8(x,'1')>3 A(X,X') — Alm(4)(X,T),
where T = (X', T, n, 4y is any monad in A and X is any 0-cell in A,
as in Theorem 2.3 (IIb) of [6] for » = »'¥) with j = 5, 4. Let s = (m, )
be any inverse monad morphism in A from a monad| T = <X', T, n, u>
to a monad T = (¥', T, %, u’>. Then the formulas

(7) al(s)(a) = <T", mf, ma-yf), al(8)(Q) = ({», Y', mp), {n,T")),
where
a =<T,f,ay and @ = ({»n,X',¢), {n,T)),
define a functor
al(s): Alm(4)(—,T) > Alm(4)(—, T').

For any 0-cell X in A the al(s)-images of the objects and morphisms
of Alm(A)(X,T) belong to Alm(4)(X,T’), so al(8) may be considered
as the functor from Alm(A4)(X,T) to Alm(4)(X,T’). Let A and A’
have the same meaning as before. Hence

(I") The mappings

T 2(-,m)
l.- (m,y) l(';o .'l(')’ th‘d)
T Z'(__’T,)

define a functor
K*: Mon™(4) - Adj*(4"),
where
ve(f) = (X, Y, 9>, <X, T)).

(IT7) For each 0-cell X in A the mappings

T Z(x,m)
l--ou.v) > l(&al(u).v..id)
T Zix,1)

define a functor
Kx:Mon™(4) — Adj*“(4').

Obviously, L_ r, and L x, 1 are the objects of the category Kan (4)4).
Since pr K (8) = id, the mappings

T L (or Lix,m)
la=(m,v) — (al(s), m)
T L 1) (or Lix 1)

define the functors
" Sem(—, A): Mon" (A) -~ Kan(4A']4A’)
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and
Sem(X, A): Mon™ (4) - Kan(4'}4’),

where X is any 0-cell in A.
Let us assume that 4 = 2-CAT(U). Then A’ = A and we have
the functors

F: Adj(4) - Mon(A4), K:Mon(4)— Adj(4),
Ky: Mon(4) — Adj(4)
and
F°: Adj"(A) —~Mon™ (4), K :Mon"(4)—> Adj(4),
K3: Mon™(A) - Adj“(4).
We do not know any adjunctions between those functors.
2. Some adjunctions between the categories in adjunction and monad
2-categories. Let A = 2-CAT(U), where U is any universe.
THEOREM 2.1. For any 0-cell X in A, for any monadT = (X', T, n, u)>
in A and for any adjunction
2 =<f9,7¢>:Y =X
in A, there is an adjunction
By = {ax, bx, 0, ¢%>: 2-Adj(4)(KEx(T), Z) — 2-Mon(4)(Dyyx, 1), F(Z))

such that the functor by is full and faithful.
Proof. Let
C =2-Adj(A)(Kx(T), Z) and C' = 2-Mon(4)(Dyyx,m, F(Z)).

Let » = (m, k, f, a) be any object in C, i.e. any diagram

AX, X') 25 Re(4)(X, T) =5 A(X, X')

T
Y 7 >Y'’ —>Y

g

in A which is an adjunction morphism. We write L., H,., and D,, instead
of Ly x,1)s Hirx,1)s 804 Dyy X,T) respectively. We put

$ = ax(r) = (m,y>, where y =gf-aH,,.
The pair s is an object of C’. Indeed, by (1) for » we have

VM = gB-aHy, -muy, = my’
and, moreover,

ge'fm-gf (98- aHy,) (9B aHy,) Dy, = gpe’ - gfally, gBLlnHyr aHy Dy,
= gf-gke Hy, aHy Dy, = gf-ag Hy, = gf-(a-mly,eye)Hy,
= p Ml e Hy = 9 Mppeyy
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which implies that s is an object of ¢’. Let (r, 0¢) be any morphism in C
fromr = {(m, k, B, a) tor’ = {(m/, k', ', a’). Then, by putting ay ({7, o))
= 7 we obtain a morphism in ¢’ from 8 = ax(r) = (m, ) to 8’ = ay(r’)
= {m’, p’>. Indeed, by (2) we have
9fvy = gfv-gf-aHy = g(fr-p) aHy = (' -oHy,) aH,,
= gp’'-(go-a)Hy, = g’ a'Hyy vly Hyy = ' vln Hy,.

Obviously, the mapping ax: C — C’ preserves the composition,
so it is a functor. Now we define a functor bx: C' — C. For each object
s = (m, ) in C’, i.e. for each monad morphism s from D, to F(2) =T"'

=X, gfl_"?'y ge’f>, we put bx(s) = {(m,m,p,a), where g =id = fm
and a = vy, i.e. aupyp 0 = ¥f and m is defined by the formulas

(8)  m(T,If, uf">) =fmf', W(Q) = &fmf” fof " fmep-fmnf,
where <{T', Tf', uf’> is any object of Kr(4)(X,T) and

Q@ = KX, X', 9>, <X, ID): LT, If', uf"> —<T, Tf"', uf'">
is any morphism of Kr(4)(X, T).
Using () for f =f', f' =f" and » = X we have
(9) m(Q) = &'fmf” -f3(Q)-fn'mf’,

where 8(Q) is given by (3) for » = X, f = f’ and f' = f’. Moreover, using
(b) and (3) we obtain

m(Q1Q) = 'fmf""" - f8(Q,) - fyf "’ - fme - fmnf’
= (fe")mf""" - fafuf""" - fafmepy - fgfmnf” - fof " - fmep - fmnf’
= e'fmf""’ - &'fy fgfme, fgfmnf" -fyf" fme - fmyf’
= e'fmf"" -fof'"" - ' fme, - fgfmnf" - fof " fme- fmyf’
= e'fmf"" - fyf"" - fme, - ('fmn)f" - fyf " - fme - fmaf’
= 77‘(01) 'ﬁ(Q),

which implies that 7 preserves the composition, and thus # is a functor.
By (9) and (b),

MH . Q = &fmf" -fs(Hy Q) - f M f’ = fmf" -f (yp -mnef’)
= efme fn'mf’ = fme-e'fmf’ -fn'mf’ = fme
and, therefore,
mHy, = fm.

By (5), (3) and (8), y is a natural transformation. Since
e KT, If', uf') = m((X, X', uf'>, (X, T)) = efmf’-fu'mf’ -f(n'y)f’
= &fmf’ fof' = m (T, If', pf'> fa T, If', uf'>,
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i.e.
ey, = e'm-fa,
and
n'mf’ = ¢f’ mnf = ey f -myef', ie. n'm = aHy myy,
bx(s) is an object of C by (1). For any morphism
7:8 = (m, p) > =m,y")
in ¢', by putting
bx(r) = <%, fr>, where fr(KT, If', uf">) = f+f’,

we obtain a morphism in C from by (s) to bx(s’). Indeed, the first equality
of (2) holds by assumption on r. The second equality of (2) is obvious
by the definition of by. From the definition it follows easily that by pre-
serves the composition. Thus by: ¢’ — C is a functor for which ayby = 1,..
We now define the unit and counit of an adjunction between the functors
ay and by. We put & = id and
n°(m, ky B, a) = <m, B>: {m, k, B, a) >bxaxim,k, B, a)
= bx{(m, gf-al, > = {(m, m,id, gf-aly,)
and we can see by (2) that {m,f) is a morphism in (. This morphism is
natural in {m, k, B, a), since for any morphism {r, o) in C we have
bxax (T, o) <my By = (v, frdimy B> = Cx, foB) = (x, fooB)
= (v, B oHy) = (1, B'-0) = (m', B (¥, o).
Moreover,
axim, k, B, a)>-axn®{m, k, f, a) = &°{m, gf-aH > -ax{m,p)

=mm=m = ax<m) k, B, a)
and

bxe®{m, ) n°bxim, y) = <m7f—'”;>'77°<m9 m, id, )
' = {m, m)-{m,id) = (m, M) = bxim, y),
i.e.
fay-azn® =ay and bxe® by = by.
Thus By = {ax, bx, 1° €°> is an adjunction. Since the counit of
this adjunction is identity, by is full and faithful.

THEOREM 2.2. For any 0-cell X in A, for any monad T = <{X', T, n, u)
in A and for any adjunclion

2 =Lfgn, e Y =X
in A, there i3 an adjunclion
Bx = {a%, bx, ", &): 2-AdjT(4)(Z, Kx(T))

2 — Colloquium Mathematicum XLIII.2
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such that the functor bx is full and faithful, where D x 1, is the monad defined
by the adjunction Zix,1)-
Proof. Let » = {(m, k, §, a) be any object of the category
C = 2-Adj"(4)(Z, Ex(T)),
i.e. any diagram
Y LA >y Y — ¢ Y
ml 8t lk a} lm

A(X, X')—> Alm(4)(X, T) —> A(X, X')

which is an inverse adjunction morphism, where H is H x ) and L is
Lx,r . Putting
= ax(r) = {m, of L)
we obtain an inverse monad morphism. By (17) we have
y'm = of Lp-n'm = my’

and

mu' 9T’ D g pyp = mge’f-(af L) gf- LH (af - Lp)

= ac'f- Lpgf-LHaf-LHLp = af -L(ke'-pg-Ha)f- LHLp
= af -Le'p = of-Lp-Le*Hm = y-u*m,
which implies that s is an object of the category
C’ = 2'M0n‘_(A)(F‘_(2)’ 'D(.X,T)) .
Let
{ryod:r =(m,k, B, a) >r' ={m', k', f', a’)
be any morphism in C and let
8§ = a;(') ={m, ), 8 =ax(r')=<{n',y").

We put v = ax({r, 0)), and thus we obtain a morphism in ¢’ from s

to 8, since by (2) we have
©9f-y = (vg-a)f-Lp = (o' Lo)f-Lp = a'f-L(of-p)
= a'f-L(f'-Hr) =y -LHx.

Obviously, the mapping a%: C — C’ preserves the composition, and

thus it is a functor.

Now we define a functor b%: C’ — C. For any object s = (m, y)
in ¢, i.e. for any diagram

Y of >Y

m), o |

A(X, X')—> A(X, X')
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which is an inverse monad morphism in 4, we put
r = bx(8) = (m, m, B, a),
where
(10) m: Y — Alm(4)(X,T)
is a mapping on objects and on morphisms such that
m(yo) = <T, mgy,, mge'y, - vgy,>
for any object y, in Y’, and
m(Q) = ((X’ X’y mgQ>7 <X9 T))
for any morphism Q: y, -y, in ¥’,
(11) a =id = mg = Lm,
(12) B =% with yy, = (KX, X', yyo), <X, D)
for each object y, in Y.
Thus we obtain an object in C. Indeed, 7 (y,) is a monad algebra,
since

mye'yy gy, Mgy, = m(ge’-n'g)y, = mgy,
and

mge'y, vgy, T (mge'y,- wgyl) = mge'y. gy, LHmge'y, - LHygy!
= mge'y,- (yge’)yy LHygy, = mge'e'y,  vafgy,  LHygy, '
= mge'y, (mp’ -ygf - LHy) gy, = mge'y,-(y-u*m)gy, = mge'yy-vgy, - umgy,.
m(Q) is a monad algebra morphism, since

Y

mgQ mge'yy-vgy, = my(e'Q) ¥y, = mge'y; - vgQ
= mge'yy gy, - LHmgQ = mge'yy -pgy, -TmgQ.
Hence, by mg(9Q,) -mg(Q) = mg(Q,-Q), the mapping 7 defined in (10)
is a functor. Obviously, L#% = mg. The mapping y: Hm — mf defined
in (12) is a natural transformation since yy, is an algebra morphism for
any object y, in Y. Indeed,
Vo' mYo = pYo'p*myo = Mmu'Yo v9fyo- LHyY, = mge'fyo-vafyo TyYo.
For any morphism ¢: y, > ¥, in Y we obtain
mfqpyo = KX, X', @), <X, T)) = (KX, X', yy, LHmg), <X, T))
= yy,-Hmyq.
We have
&'y, = & T, mgy,, mge'yyvgyey = (KX, X', mge'yy pgyo), <X, T))
= (KX, X', Lime'y,-Lypgy,y, <X, T)) = (me'-yg)y,
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and, consequently,

Moreover,
Ly-n*m =y n*m = my’,

i.e., by (1%) r is an object of the category C. Let us observe that for any
functors

my, my;: Y — Alm(4)(X, X')
and for any 2-cell

y: Im, — Im,

there is exactly one 2-cell

y:m, -m; with Ly = y.

Let

T:8 =<m,y) >8 ={m,y")
be any morphism in ¢’. By putting by (v) = <, gD, we obtain a morphism
in C from b%(s) to bx(s’). Indeed, by the second equality of (2) we obtain
an equality which holds by assumption on 7; moreover, the first equality
of (27) is obvious. From the definition it follows easily that by preserves
the composition and that b%: ¢’ — C is a functor for which a3by = 1,.

To define the unit and counit of an adjunction between the functors
ay and bx we put & = id and

" {m, k, B, ad = {m, a: (m, k, B, a) - bxax{m,k, B, a)
= bx{m, of -Lf) = {(m, m, of LB, id).

We can see from (2%) that {m,a) is a morphism in O, natural in
{m, k, B, a), since for any morphism (z, o) in C we have

bxax <z, o)-(m,ay = {r, 1g)<m,a) = <z, rg-ay = <z, rg-a)

= (v, a’ Loy = {r,d +0) = {m’, a’> <z, o).

Moreover,
3°<_a'}<m’ k, B, a -a}n“—(m, k,B,a) = 30*(”"" af'Lﬂ>°a;<m7 a
=mm =m = ax{m, k, §, a)
and
bxe® <m, 9> 0" by (m, y> = (m, mg>-n™ (m, 7, p, id)
= {m, m)y-{m,id) = (m, m) = b;('m’; v,
i.e.
e ay-axn’ =ay and bxe" - by = bx.
Thus B} = {ax, bx, 7’ , & ) is an adjunction. Since the counit of
this adjunction is identity, by is full and faithful.



CATEGORIES OF MORPHISMS 229

THEOREM 2.3. For any object g: ¥’ — Y in Kan(4|A4), for any
monad T = (X', T,n,u> and for any 0-cell X in A, let {(T",&,) be the
right Kan extension of g along g with T' being the monad of this extension,
and let

m(yy) = (T, mgy,, me Yo vgYy)
and

m(Q) = KX, X', mg@>, <X, T?)
for amy object y, and any morphism @ in X'. Then the formulas

v ’ ’ ’ —_— ('ﬂt
§=\(m,p) —>8 ={m,y)>{mmy—

define a functor
G: 2-Mon™ (4)(T", D(x,r)) - 2-Kan(AJ,.A)(g, L(X,T))
which 18 an isomorphism.

Proof. Since (T’, &) is the right Kan extension of g along g,
(T’ gy¥gy &Y, i8 & monad algebra, and thus, by (7), m(y;) is also a monad
algebra. Hence m: Y’ — Alm(4)(X, T) is a functor and Lm = mg. Thus
{m,m) is an object of 2- -Kan(4|A)(g, L), where L i8 L xrg). Since

Lrg = 7g (8see the proof of Theorem 2.2), (rg, 7) is a morphism of this

category from {(m,m) to (m , m'>. Obviously, G preserves the compo-
gition, and thus @ is a functor. Consider the functor

Str: Kan(4|A) - Mon™(4)
defined in Theorem 1.4.4 in [56]. Now a functor
G,: 2-Kan(4|A)(9, Lix,1)) = 2-Mon™ (4)(T", Dx,1))
is well defined by the formula

G1(<{m, m">) = 8tr({m, m’)) = (m’, )
on objects and by

> (mly m')

G,({oy)) =7
on morphisms. Indeed, let

(@, T>: {my m’> — (my, my)>

be any morphism in the first category. Then v = @,({o, 7)) i8 a morphism
in the second category from Str({m,m')) = (m’,y> to Str({(m,, m;))
= {(my, ¥,). Indeed (see the proof of Theorem 1.4.4 in [5]),

ay° (27T p)g = a,°2,9-tT'g-yg = mye,-vT'g-yg = (ve;) 79
= 1g-m'e, yg = Lo-a-29:27'g-hg = Lo-a-hg = Lo-e*m = &*o
= &¢'my-DLo = a,"h,g-Drg = a,* (2,9, Dr)g,
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whence
2, tT' 'y = 2,°y,Dr,
and thus
Iy =y, Dr,

where D is Dx ). Obviously, G, preserves the composition and GG, = 1,
G,G = 1. Thus @, is the inverse functor of @, and G is an isomorphism.

For X =1 and g = L,y,), Theorem 2.3 gives a result of Alagic [1].

3. Characterization of monadic functors. Let A = 2-CAT(U), where U
is any universe. In this case the functor Sem (X, A) defined in 1.6 is of

the form
Sem (X, A): Mon"(4) - Kan(4[4).

Let X =1 be the one-object category in 4. Consider the functor
Str: Kan(4|4) -~ Mon™(4)

defined in Theorem 1.4.4 in [5].
THEOREM 3.1. The fundtor Str: Kan(A|A) -~ Mon“(4) 48 left adjoint
to the fumotor
Sem(1, 4): Mon™(4) - Kan(4|4).

Proof. We define a natural transformation
¢: Kan(4|A) - Sem(1, A)Str
by putting, for any object g: X' - X in Kan(4|4),
99 = <Km X>,
where K,: X' — Alm(A4)(1, T) is the comparison functor of g, i.e. (T, &)
is the right Kan extension of g along g and K, (2') = (T, g2’, &2’) on
objects, K,(Q) = g@ on morphisms. For each morphism {m,m")>:g — g’
in Kan(4}A4) we have
Sem(1, 4)8tr(<m, m')) g9 = {al(<m', p)), m") -(K,, X
= <31(<'m"7 7>)Kai m'> = <-Ka"m’1 'm"> =gg’ - {m,m"),
since
al({m’, D) K, o' = al(Km’, D) KT, go', ex")) = <T", m'ga’, m’e2’" - yga")
— <Tl’ g’m’, 'me'a:"z—lgm' 'hg$'> — <T', glml’ awl.hgwr>
= T, ¢'ma’, ¢'mx’) = K, ma’
for each object 2’ in X. For any object T, in Mon“(4) and for any mor-
phism {m,m'): g - Ly p, in Kan(4]}A4) there is only one morphism
(m'y &:T —T, in Mon™(4) such that

<m'y £ -pg = <m,m">.
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We define & as z~'-w, where
X'y wy: (I'm/, pm)—~(T", a)

is the unique morphism in the category 2-d4(X, —)(g, m’g) from
{T'm', pm) to the terminal object {T"’, a) of this category, and

(X', 2): {T", a) = {m'T, m'e)
is an isomorphism in this category to the right Kan extension of m'g
along ¢ (see [5]). Moreover,
p: TL(I,T) -> L(I,T)

is the natural transformation defined by p<{T, »,¢) = q. Hence Str is
left adjoint to Sem (1, A) with unit ¢. Let us observe that

StrSem(1, A) = Lygne(a)s
since
StrSem(1, A)T = S8trL, ) =T
and

StrSem (1, 4)(<{m, o)) = Str(<al(<m’ o)), m>) ={m, y> with o =y
by the definition of Str (see [5]) and by the equality

p'al((m, o)) (KT, @, @) = mp oL, (KT, =, ).

Hence the counit of this adjunction is identity, and thus the functor
Sem(1, 4) is full and faithful. Therefore, we have the adjunction

(Str, Sem(1, 4), ¢, id)>: Kan(4}4) — Mon* (4)

which defines a monad S = (Kan(4|4), 8, ¢, 49> such that u® is
a natural isomorphism. It follows that ¢L, g, is a natural isomorphism
with the inverse
p: 8L, s _)'L(I,S)'

Thus we have the following algebraic characterization of monadic
functors:

THEOREM 3.2. Let g: X' — X be any object of Kan(A|A) and let T
be the monad defined by g. Then the comparison funotor

K,: X' > Alm(4)(1,T)
i8 an isomorphism if and only if there i8 exaclly one S-structure on g, t.e.
if and only if there is exactly one morphism {(m,m’): Sg — g in Kan(A|A)
such that (S, g, {(m, m">> i8 a monad S-algebra in the category Kan(AlA).

Proof. Let (S, g, {m, m')> be any monad S-algebra in Kan(A}A4).
Then

‘PL(I,S)<S7 g, {m, m'>> =@g = <Kg7 X



232 A. KURPIEL AND J. SLOMINSKI

is an isomorphism in Kan(A}A4) with the inverse {(m,m’). From the
definition of the monad S§-algebra it follows that m’ = X and K,m = X',
that is, K, is an isomorphism in A with the inverse functor m. Let
K,: X’ > Alm(A4)(1, T) be an isomorphism in A with the inverse
functor m: Alm(4)(1, T) - X'. Then {8, g, {m, X)) is a unique monad
S-algebra in Kan(4}A) on g.
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