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§ 1. Introduction. Kuratowski [2] has shown that at most 14
distinet sets can be constructed from a subset of a topological space by
application of the closure, complement, and interior operators in any
order. We will say that a set A is a K-set if exactly 14 distinet sets can
be constructed from A in this manner. A topological space is said to
be a K-space if it contains a K-set. If B is the set in the real line con-
sisting of all points in (0,1) v (1, 2), all rationals in (2, 3) and the point
4, then it is well known that B is a K-set.

In this paper an example will be given of a finite topological space
having seven points which is a K-space. We will show that no topological
space having less than seven points can be a K-space. However, the to-
pology of a seven point K-space is not unique. In fact, there are five
non-homeomorphic topologies on a seven-point set which make it a
K-space.

How much structure can we impose on a finite topological space
and still have it be a K-space? If we require 7', (singleton sets are clo-
sed; [1]), then every set is a finite union of closed sets and therefore
closed. Hence, the topology is discrete and there are no K-sets. We will
show that if we require T, (given any two distinet points there exists
a neighborhood of one not containing the other; [1]), then at most 10
distinct sets can be constructed. That it is possible to have exactly 10
distinct sets is shown by an example in a five-point T,-space. We go on
to show that no 7,-space having less than five elements can contain
a subset from which 10 distinct sets can be constructed. The topology
on the five-point space is not unique, however, and we exhibit three
non-homeomorphic 7, topologies which satisfy the requirement.

We are greatly indebted to Dr. H. Nakano for his advice and encoura-
gement during the preparation of this paper.

In the sequel we will use the notation A~, 4° and A’ for the closure,
interior, and complement of a subset A of a topological space according
to [3].
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§ 2. Finite topological spaces. We begin with

ExAmpPLE 1 (due to H. Nakano). Let § ={1,2,3,4,5,6,7} and
let 7, be a topology on 8 with base g, given by

ﬁo = {07 S) {1}7 {7}’ {1, 2}1 {6’ 7}7 {37 5}}
Then A = {1, 3,6} is a K-set

A~ =1{2,3,4,5,8,7}

A'°- = {3, 4,5,6,7)
l

| |
A’ =1{2,4,5,T}4’~° = {3,5,6,7} A°- = {4,8,7}
| |

I
47 = {6, 7}

AIO —_ {7}

A- ={1,2,3,4,5,6}
I

4°- =11, 2,3, 4, 5}
|

1 |
A =1{1,3,6}4° = {1,2,4} A-°={1,2,83,5}
| |

l
4°-° = {1,2) *

4° = {1}

Fig. 1

In figure 1 if two sets are connected by a line then the set below is
contained in the one above. Verification of the accuracy of the figure
is a straightforward exercise.

LEMMA 1. If A°~ > A™°, then A°~ = A™°" and A™° = A°™°.

Proof. 4°° > A7 o A° and A°°> A™° > 4A°°

LEMMA 2. For any subset A of an arbitrary topological space S (not
necessarily finite) A=° ~ A°~' cannol contain a singleton open set.

Proof. Assume {r} = {#}°. Necessarily either xed or zed'. wed
implies xeA° < A°~ which implies ¢ A7° ~ A°'. xe A’ implies veAd”” <
c A°” = A~ which implies 2¢ A™° ~ A°7'.
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THEOREM 1. No topological space having less than seven points can
be a K-space.

Proof. Assume A is a K-get in a finite topological space. Since A4°~
and A47°" are distinet by the definition of a K-set, then, by Lemma 1,
A°~ » A7° or, in other words, A°°'~ A™° =G # @. Also, since @G
is open, Lemma 2 shows that G is not a singleton. Therefore, G contains
at least two points or, equivalently, 47° contains at least two points
(call them « and y), which are not contained in 4°~. Moreover, A°~ prop-
erly contains A°7° and therefore must contain at least one more point
(call it w) than A°~°. Thus, if we try to build up from A° adding the
minimum number of points consistent with the above requirements and
with the requirement that the sets be distinct, we are led to figure 2.

A- = {a,,...,an,8n41,w,2,Y, 2}
.A_o— = {al, ey Ony, An 41y w,x, y}
| '
A°" = {ay, ..., @, Gny1, w} A~°={ay,..., an, @ny1, T, ¥}
|
A°7°= {ay, ..., an, any1}

A° = {a,, ..., an}
Fig. 2

We see that if 4° has n elements A~ has a minimum of n+ 5 elements.
Since either A° = @ or A— = § would mean that 4 is not a K-set, n
must be at least 1 and n+ 5 must be less than the number of elements
in 8. Choosing » = 1 we find that the space must have at least seven
points.

The above reasoning also shows that in a seven-point K-space there
are exactly two singleton open sets, the interior of any K-set and the
interior of its complement. '

THEOREM 2. There are exactly five mon-homeomorphic topologies on
a seven-point set which make the set a K-space.

Proof. Let R = {a,,...,a,}. If (R, 7) is a K-space and A is a K-set
in R, then A° and A’° are the only two singleton open sets. Also A°~°
and A’°~° must be two-point open sets. Furthermore, A°~'~ A™° =@
is a two-point open set disjoint from A°° and from A°™° = A7°",
Define

f:8=4{,2,3,4,5,6,71 >R

by: f(1) = the only element of A°;f(7) = the only element of A'°; f(2)
= the only element of A°~°—A°; f(6) = the only element of A°™°—A4'°;
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f(3) = one of the two elements in G;f(5) = the other element in G;
f(4) = the remaining element in RE. Now define a topology 7’ on S by:
X is open in § if and only if f(X) is open in RB. We see that (S, ') is homeo-
morphic to (R, r) and 7’ is stronger than z,, the topology of example 1.
Thus, any seven-point K-space is homeomorphic to (S, t’), where 1’
is stronger than =,.

Now suppose Ber’ and Bért,. If

BA{3,b}=BA(AT°A~AA"")#0

we must have B o {3, 5} since otherwise B ~ {3, 5} would be a singleton
open set contradicting Lemma 2. Suppose 7¢B. Then B « A- which
means, since B is open, B <« A~° = {1, 2, 3, 5}. Either B~ {3,5} = O
or B o {3,5} leads to {2}et’, a contradiction with the fact that there
are exactly two singleton open sets in a seven-point K-space. Since both
possibilities lead to a contradiction we must have 7¢B. A symmetric
argument shows 1eB. Thus, Bet’ and B¢t, implies B o {1, 7} and either
B> {3,5} or B~ {3,5} =@.

{1, 2, 3, 5, 6, 7}

| |
{1,2,3,5,7) {1,3,5,6,7)
l |
|

|
{1,2, 7} {1,3,5,7) {1, 6, 7}
! |

{L, 7}

Fig. 3

Inspection shows that figure 3 contains all possible candidates for
new open sets which do not contain the number 4. However, all these
sets are open in the original topology 7,; hence they give nothing new.
Thus, we will get all possible candidates by inserting the number 4 at
various places in figure 3. Moreover, any topology obtained in this manner
will give us a K-space. In fact, all new open sets will contain both the
number 1 and the number 7 and thus can never be contained in any of
the fourteen sets constructed from the K-set A. Hence, the operation
of taking the interior of a set will lead to the same result in all cases and
since A- = A’ we see that the closure operation will give the same
sets as before.

Now, referring again to figure 3, if we insert a 4 in the set in the
top row we merely get the original topology. Inserting a 4 on the left
side in the second row from the top gives a second topology. A third
topology results if a four is placed in the set on the left side in the third
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row down. If a 4 is put in the set in the middle of the third row from
the top we get a fourth topology. Finally, a 4 in the set on the bottom
gives us a fifth topology. As we go up, following the lines in the figure
each set above is the union of the set below with an open set. Thus, if
{1, 4, 7} is open, then a 4 inserted in every set of the diagram also gives
an open set.

Placing more than one 4 at a time gives nothing new since the in-
tersection of two open sets is open. Furthermore, we get nothing new
by placing 4’s on the right side since any topology obtained in that manner
is homeomorphic to the topology obtained by inserting a 4 in the corres-
ponding position on the left side. The required homeomorphism is the
mapping which trades 1 for 7 and 2 for 6 and leaves the others unchanged.
This is clearly a homeomorphism since the basis sets of 7, are merely
permuted and an open set in the diagram on the right side is mapped
onto its symmetric counterpart on the left side.

§ 3. Finite 7';-topological spaces. The following result is easily proved
by induction.

LeEMMA 3. Every non-empty finite Ty,-space contains a singleton
open 8set.

THEOREM 3. In a finite Ty-space, A™° = A°™° and A°~ = A™°".

Proof. A7° ~ A°~’ is an open subset of the 7,-space and, by Lem-
ma 3, if it is non-empty it must contain a singleton open set since it is a
T,-space itself. This is impossible by Lemma 2 so we have A™°~ A°™' =0
or A°” > A™°. Then Lemma 1 shows that A7° = 4°7° and 4°~ = A7°".
(Also, of course, 4'7° = A°"°and A"~ = 4'7°".)

Thus, we see that a finite T,-space cannot be a K-space and, in fact,
no more than ten distinct subsets can be constructed from any subset,

ExampPLE 2. Let § = {1, 2, 3, 4,5} and let v, be a topology on §
with base f, given by: g, = [0, 8, {1}, {5}, {1, 2}, {4, 5}}.

Then (8, 7,) is a T,-space and, referring to figure 4, we see that ten
distinct sets can be constructed from 4 = {1, 3, 4}

A'- = {2, 3, 4, 5} A- ={1,2,3, 4}

A7°- = {3, 4, 5} A°- = {1, 2, 3}
4’ = {2, 5} 4 ={1,3,4}

A4'-° = {4, 5} A-° = {1, 2}

A° = {5} A4° = {1}

Fig. 4
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Figure 4 is easily verified. The inclusion relations among the sets
hold true in any finite 7,-space. Hence, is it obvious from the diagram
that no set with fewer than five points would fill the requirements.

THEOREM 4. There are three non-homeomorphic Ty-topologies on a five-
point space such that ten distinct sets can be constructed from a subset of
the resulting topological space by application of the closure, complement
and interior operators in any order.

Proof. Just as in the proof of Theorem 2 it is easily shown that 7z,
is the weakest such topology (up to homeomorphism). In considering
possibilities for stronger topologies we arrive at figure 5.

{1, 2, 4, 5}

{1, 5}
Fig. 6

Inserting the number 3 in the top, left hand and bottom sets we get
three non-homeomorphic topologies.
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