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EXTREME OPERATORS ON 2-DIMENSIONAL 1,-SPACES
BY ‘

RYSZARD GRZASLEWICZ (WROCLAW)

For any two Banach spaces F and F we denote by % (E, F) the
Banach space of all linear bounded operators from F into F. An operator
Te%(E, F) is called a contraction if ||T| < 1; T is called an extreme con-
traction if T is an extreme point of the unit ball of Z (E, F).

Let 1 < p < oo and let A be a non-empty index set. As usual, we denote
by 1,(A) the Banach space of all p-summable functions on A. We denote
by ¢; the element of 7,(4) defined by ¢;(j) = 4, for ¢,j € A.

If p = oo, then using the well-known Banach lattice isomorphism
l,(4) - C(BA) and Sharir’s result in [7] we can characterize all extreme
contractions in £ (l,(4),l,(4)) as the lattice homomorphisms taking
1 into 1, multiplied by functions of absolute value 1 (see also [1] and [3]).

For p = 1 and real I,-spaces, the extreme contractions can be charac-
terized (by duality) as those operators whose adjoints are extreme contrac-
tions in Z(l,(4),1s(4)) (see [1], Proposition, and [3] for |4| = N,).

In case of p = 2 and complex scalars, the set of extreme contractions
coincides with the set of all isometries and coisometries of the Hilbert
space l; (see [2], Theorem 1). Throughout the paper we assume that
1<p< oo

LeMMA 1. Let p>2 and let T = ¢,Qy € £(1,(4),1,(4)), i e A. If
lyll = 1 and y(j) # O for all j € A, then T i3 an extreme contraction.

Proof. Let T = ¢,Qy, i.e. Tw = {(w, ¢,)y and ||T+ R| <1 for some
Re2(l,(A),1,(4)). It p>2, then 1< g<2 whenever 1/p+1/g = 1.
By the uniform convexity of I,(4) we have Re; = 0, 8o

(es, B'®) = (Reg, ) =0 for all v el,(4).
Now we put
' = D signy(§) ly(j)I* e e, (4).
jed

By on easy calculation we observe that [yl =1 and ||T"y|| = ¢
Therefore, [Ty = |ly*ll, 80 R'y* = 0 by the uniform convexity of ,(4).
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For ¢e> 0 and k€ A we have

(T" + B)(y* + esigny (k) ey)|| < lly* + esigny (k) e, .
Therefore, since T'e, = y(k)e;, we get

led1+ 1y (R))]|2+ IR el < D 1y(5)IP +|signy (k) {1y (k)1*~* + &) |2.
J#k
Hence, we obtain

IR el® & e 1 — [y (k)P + (ly (B)IP " + &)t — (L + ey (R)I)7] -

Using twice the de 1’Hospital rule we can see that the right-hand
gide of this inequality tends to 0 as ¢ — 0. Therefore, R'¢, = 0,80 R = 0,
which completes the proof of the lemma.

Let X be the 2-dimensional real l,-space, 1 < p < oo. Clearly, X can
be identified with R? endowed with the p-norm ||(2,, @,)|| = (|2,|? + |4|?)"".
We denote by & the unit sphere in ¥ (X, X), and by U the unit
ball in X. '

For any » = (z,, ¥,) € R* we write
o = (8igna, [@,|P7!, signawy |ze[P™')  and  2° = (—wa,, ).

Note that if |lz|| = 1 in X, then o', considered as an element of thg
dual Banach space X' of X, is the unique functional of norm 1 attaininl
its norm on . Also (#!)° = (#°)! holds and (2°)! € X’ is a unique functiona
of norm 1 attaining its norm on #° € X. On the other hand, #° as an element
of X' is a (unique up to a scalar multiple) functional annihilating «. Let
us note that if # # 0, then # and («°)! are linearly independent.

Let #, y € X be fixed with || = |ly]]| = 1 and let

Ay ={T'eZ(X,X): To = y}.

Observe that 2'®y e o, ,, 80 &,, # 3. COlearly, all operators in
o, have norms greater than or equal to 1. It is easy to see that &, ,
contains all operators of the form

T, = 2@y +i2°®(y°)?, teR.

We claim the set S, , = &, , NS consists of exactly such operators.
Indeed, for 8, T € #,, we have (8—T)x = 0, whence dim (range (S —T))
<1 (dimX =2),- and 80 8—T = 2'®z for some zeX. Since
8'yr = T'y* = ', we have also (§—T) y* = 0 and, analogously, (8 —T)’
= (4°)'®@w for some weX. Thus 8—T = w®(y')°, which implies
z = t(y*)° for some ¢t € R and proves our claim. Obviously, the operator
T, is a linear automorphism of X for ¢ # 0.

We irifer that the set , , is a closed non-empty (possibly degenerated)
line segment in & (X, X). Let us observe that ., , is a face (i.e. an extreme
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convex closed subset) of the unit ball in & (X, X). In fact, for any T e S,
and Re¥ (X, X) with |[T+R||<1 we have |(T+R)z|| = |ly+Rz|<1,
whence Bz = 0 by the uniform convexity of X. This implies T+ R € o, ,
and, consequently, 7+ R € S, ,. Finally, let us note that any operator
T € & attains its norm on a vector # of norm 1. Hence & is a union of the
sets S, ., ol = |lyll = 1. Thus we have the following

PROPOSITION. For any pair @, y of unit vectors in X the set
Iy ={Te?: Te = v}
18 a closed 0- or 1-dimensional face of the unit ball in £ (X, X). Moreover,

& = |JSI, ) where the union extends over all pairs », y with |z| = |ly|| = 1.
In particular, & is the 1-gkeleton of the unit ball in £Z (X, X) (we recall
that the k-skeleton of a convex set @ is the set of all points # € @ such that
the face generated by # has dimension less than or equal to k; see [6]).
Let p > 2 and |#|| = |lyll = 1. For every ¢ gR we define a function
fi: R —> R by
|7 + = (27)]}?
e+ (@)P
Obviously, f;(0) = 1 for every t e R. Moreover, f; has the second
derivative and by a standard calculation we obtain

fi(0) =0 and  f(0) = p(p—1)[t*]y19s/*"* — |2, 2," ]

for every t e R. If 2,2,9,y, # 0, then the third derivative of f, exists
and we have

£t (0) = p(p—1)(p —2)[1*8ign (¥195) 191¥3l" > (19:1° — |¥s?) —
— Bign (0, %3) |4, 0[P~ (|, [P — [25P)].
If T,es,,, then, obviously, f;(z) <1. Since f;(0) =1, we have

f:(0) = 0 and f;'(0) < 0. Moreover, if f;'(0) = 0 and the third derivative
exists, then also f;" (0) = 0.

LevMMA 2. Let p > 2, #,%3Y:1Ys # '0, where @ = (81, 0,), Y = (Y1, Ya),
and let T, be an end point of S, . If £, (0) = 0, then T attains its norm on
two linearly independent vectors.

Proof. Obviously, f,”(0) = 0. Thus- we obtain the following pair
of equalities:
1) 8 19,9 7° = |, @,*""°,
(2) s28ign(y1Ys) [91Yal" "> (19117 — [y2IP) = 8ign (@, @) |2,5,[P > (|2, |P — |24[7).

Now, by adding both sides of the square of (2) to both sides of (1)
multiplied by 4, we obtain

(3) 8° '?hyz|2p-6 = |‘1’f'1a’f'a|2p-"s .

fi(r) =



312 R. GRZASLEWIOZ

By (1) and (3) we have |v;2,] = |y,¥s] and |8| = 1. Thus by a standard
calculation we have [,] = |y,| or |y = |y,], 80 [|(@°)*] = I[(¥°)!]. There-
fore, T, attains its norm on both x and (2°).

LeMMA 3. Let p =2 and let T, be an end point of <, ,. If f,'(0) < 0,
then T attains its norm on two linearly independent vectors.

Proof. We consider the case of s > 0. By the continuity of f,’(0)
as a function of ¢, there exists » > s with f,'(0) < 0. Since f,(0) = 0 and
£ (0) < 0, there exists & > 0 such that if || < &, then f,(z) < 1. Let

V = {a(o+B(2°)): Bl < &, a € R}.

Therefore, if a(®+pf(2°)?) eV, then f,(f)<1, so |T,o]< |v|| for
v € V. The set

T, (V) = la(y+78(¥°)Y) : 18l < &, a R}

is open, since the vectors ¥ and (y°)! are linearly independent and » > 0
(in particular, T, is one-to-one).

Let us note that if 0 < ¢ < ¢, then T, (U) « T,(U), where U is the
unit ball of X. Indeed, let % € T;,(U). Then there exists » € U such that

u = y<v, #*) 41 (y°)* v, 2%).

Also 4 = Tyw, where w = (¢'[{)v+ (1L —1V[t){v, #*)x and we U by
the triangle inequality. '

Let K, = T,(U)\(Int TUT,(V)). The sets K, are compact and
E,cK if 0t <t.

If s<t<r, then T;z, € K;, where z; is a unit vector on which 7,
attains its norm. Indeed, we have T2, € T,(U) =« T,(U). ¥ T;2,e€T,(V),
then Ty;2, € T,(UNV) (T, is one-to-one) and there exists » e §NV such
that T,2, = T,v. 8ince T, is an end point of f,,, we have

1< Tl = ITezll = Tl < Il < 1.

From this contradiction it follows that Tz ¢ T,(V). Thus T,z € K,.
Therefore, the K,’s are non-empty for s <?<r, and by compactness
there exists a vector z with 2 € K, for all 8 <t <. Since 1< ||| < |T}
for all 8 <t < r, we have |2|| = 1. Also, for every ¢t (s <t<7), 2 = T,a,
for some @, € U. By the continuity of ¢ — T, and by compactness, 2 = T,
for certain z, € U. Since Tw, = 2z # Ly €T, (V), the vectors s, and =
are linearly independent.

In case of 8 < 0 the proof is analogous.

THEOREM. Let 1<p < oo, p #2, and T e ¥ (X, X). Then T is an
extreme contraction if and only if either T atiains its norm on two linearly
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independent vectors in X or T is of the form
T *®e6; forl<p<2,
- Y for 2<p< o

with o,y * +¢ (i,j =1,2), ol = Iyl = 1.

Proof. Assume p > 2. If a contraction on X attains its norm on two
linearly independent vectors, it is obviously extreme (since dimX = 2).
If a contraction T is of the form T = ¢,®y, wherey # =+¢; (i, = 1,2)
and |y| = 1, then by Lemma 1 it is also extreme.

Conversely, if T is an extreme contraction, then ||T|j = 1, so there
exist @ = (@, ;) and y = (¥, 9s) with |w| = [yl = 1, and To =y.
We consider 4 cases:

1. If ,2, # 0 and y,y; # 0, then the assertion follows from Lemma 2
if f,'(0) = 0 or from Lemma 3 if f,"(0) < 0.

2. If 2,2, # 0 and ¥,9, = 0, then f, (0) < 0 and we can again apply
Lemma 3.

3. If #,#, = 0 and ,y; +* 0, then 8 = 0 since f; (0) < 0 for T, e S, .
Thus , , is degenerated. Moreover, T, = ¢,y with y # ¢ (1,) = 1, 2),
gince from #;2, = 0 it follows that # = +e¢;for ¢ = 1 or 2; from y,y; # 0
it follows that y # e, for j = 1 and 2.

4. If 2,2, = 9,9y = 0, then 2 = +¢, and y = F¢;fori,j = 1or2.
Thus T, is of the form

+1 0 0 Ft Ft 0 0 +1].
R S P T R |

Therefore, Ty € S, iff [{|<1,80 8 =1or —1.

Let now 1 < p < 2. Then T is extreme iff 7" is extreme and we have
¢ = p/(p—1) > 2. If T attains its norm on a vector 2, then T" attains its
norm on (T%z)!. Therefore, we obtain the characterization of the extreme
contractions also for 1 < p < 2 and the proof is complete.

COROLLARY. For p # 2 the set of all extreme contractions in the n-dimen-
stonal 1,-space (2 < n < oo) i8 not closed.

Proof. Let @(n) = ((L—1/n)"?, (1/n)"?,0,...). Then for p > 2 the
sequence of extreme contractions

T, = a:(ﬂ)®61+2 e
k>2
(Lemma 1) converges to ‘
T = e,®el+2 D ey

k>2

and, obviously, T is not extreme. In case of 1 < p < 2 the proof is analo-
gous.
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We recall that a convex compact set @ in a Euclidean space is said to
be stable if all k-skeletons of @ are closed (see [6]). Therefore, in particular,

(*) The unit ball of operators on the n-dimensional real l,-space (n > 2,
P # 2) is not stable.

Let F and F be real Hilbert spaces and let T be a contraction from
E to F. We write P

E(T) ={wek: |To| = o} and F(T)={yeF: Tyl = lyl}.

fx e E(T), then
22 = (Tw, Tx) = <T*Tw,s) < |T* Ta|| |zl < |l|?.

Therefore, T*To = « and we obtain
(Tw,Tz) = (T*Tw,z) = {x,z) for each ze K.
In particular, if «, 2z € E(T), then
IT(x+2)|2 = (T*Two+T*Tz, 2 +2) = |lo+2|°.

Therefore, E(T) is a linear subspace of E and we have T (B(T)) = F(T)
and T(E(T)') < F(T)*. Thus, if B(T)* # {0} # F(T)* and |T|E(T)*|
< 1 (in particular, if E(T)* is finite dimensional), then T is not an extreme
contraction. Indeed, |74+ Rl|<1 if we let R = ¢T'P # 0, where ¢ >0
is such that (14¢)||T|E(T)'|| <1 and P is an orthogonal projection onto
E(T)*.

Therefore, we obtain the well-known assertion that an operator T'
on the finite-dimensional Euclidean space is an extreme contraction
if and only if T is an isometry (cf. [5]).

Now for each contraction 7' we define d(T) as the dimension of the
face generated by T in the unit ball of #(R"™, R*). Since ||T|B(T)*| < 1,
we have

a(T) > dimg (B(T)*, F(T)') = dim(E(T)*)dim(F(T)') = (dimE(T)*).

Since, clearly, S|E(T) = T|E(T) whenever 8 is in the face generated
by T, we have d(T) = (dimE(T))*. Now we prove

(%) The unit ball of £ (R", R") is stable.

Indeed, it is sufficient to show that the mapping T — d(T) is lower
semicontinuous on the unit ball. Let T be a contraction in #(R", R™).

We put |T|E(T)*|| =1—e If @(T)> d(8) for a contraction S8, then
dimE(8)! < dimE(T)+, and so

dim E(8)+dim E(T)t > ».
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Thus there exists a unit vector # in E(8S) NE(T)* and we have
I8 —T| = |8z —Tx|| > (S| — |T2]| >1—(1—¢) = &.

I would like to thank Dr. Anzelm Iwanik for his contribution to this
paper.
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