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ASSOCIATED WITH GENERALIZED CONVOLUTIONS
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The main topic of this paper is a description of generalized convolutions
in terms of some invariance properties of their characteristic functions. We
denote by C, the space of bounded continuous real - valued functions on the
positive half-line R* with the topology of uniform convergence on every
compact subset of R*. Further, by ¥ we shall denote the set of all
probability measures defined on Borel subsets of R*. The set P is endowed
with the topology of weak convergence. For ae R* we define the mapping
T.: R* - R* by T,x = ax. For a function feC,. T, f denotes the function
(T; f)(x) = f(ax) and for a measure ue ‘B, T, u denotes the measure defined by
(T, w)(E)=p(a "E)if a> 0and Tyu = Jd,, where for acR*, B< R* we put
aB = {ab: be B) and ¢, is the probability measure concentrated at the point
¢. We shall also use the notation AB = fab: ac A. heB!) for A, B R*. We
say that two functions f and g from C, are similar if f = T,g for a certain
positive number a.

A continuous commutative and associative B-valued binary operation
o defined on P is called a generalized convolution if the following conditions
are fulfilled:

(i) the measure d, is a unit element, i.e. uody = u (ue P),

(i) (cu+(1—c)v)od =c(po)+(1—c)(vold) 0<c< 1, pu,v, AeP),

(iii) (T, Wo(T,v) = T,(uov) (acR*, u, ve P),

(iv) there exists a sequence c,, c,, ... of positive numbers such that the
sequence 1; 67" converges to a measure different from J,.

The power 67" is taken here in the sense of the operation o.

The set ‘R with the operation o and the operations of convex linear
combinations is called a generalized convolution algebra and denoted by
(B, o). For basic properties of generalized convolution algebras we refer to
[1] and [3]-[13]. In particular, generalized convolution algebras admitting
a non-trivial homomorphism into the algebra of real numbers with the
operations of multiplication and convex linear combinations are called
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regular. We recall that a homomorphism h is trivial if either h =0 or h= 1.
All generalized convolution algebras under consideration in the sequel will
tacitly be assumed to be regular. It has been proved in [10] (Theorem 6) that
each regular generalized convolution algebra admits a characteristic function,
i.e. a homeomorphic map from P into C,: p— ji such that (cu+(1—c)v)”
=cii+(1—c)¥ (0<c<1), (uov) =iy and (T,p) = T,ji (acR™) for all
u, veP. The characteristic function plays the same fundamental role in
generalized convolution algebras as the Laplace transform in the ordinary
convolution algebra. Moreover, each characteristic function is an integral
transform

A = [Q0x) u(dx)
0

with a continuous kernel Q satisfying the conditions |Q(1)] <1 (reR*) and
(1) Q(t) = 1—r*L(1),

where ¥ > 0 and the function L is slowly varying and continuous at the
origin. By Theorem 2.1 in [12] all kernels corresponding to characteristic
functions of a generalized convolution algebra are similar. Consequently, the
constant x in (1) does not depend upon the choice of a characteristic function
and is called the characteristic exponent of the generalized convolution o, in
symbols x(o) = x. Further, by *,; (2 > 0) we shall denote the Kingman
convolution defined by the formula

}f(X) (#ea VIdx) =3 [ L1+ )% +f (1x* = y11%) ] u(dx) v(dy)

0

for all feC,. In this case the kernel Q is given by the formula

(2) Q(t) = cost*
and
A3) (%) = 2.

For any pair u,v from B by uv we shall denote the probability
distribution of the product XY of two independent random variables X and
Y with probability distributions u and v respectively. By Proposition 1.3 in
[12] for every characteristic function u — j of a generalized convolution the
formula

4) (w) (1) = J A(tx)v(dx)
0

is true. Further, by Theorem 7 in [10] for each characteristic function of a
generalized convolution o with x (o) = x there exists a probability measure o,
called the characteristic measure of o such that

(%) 6.(1) =exp(—1t*) (teR™).
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By Theorems 5 and 6 in [10] for any kernel Q there exists a positive number
to such that Q(f) <1 whenever 0 <t <t,. Consequently, without loss of
generality passing to similar kernels if necessary we may assume that the
kernel in question has one of the following properties:

(%) Q)=1, Q@) <1 whenever 0<r <1,
(%%) Q)<1 for all t>0.

Consider two generalized convolutions o and o’. The convolution o is
said to be representable in o', in symbols 0 < o', if there exists a continuous
non - trivial homomorphism from the algebra (B, o) into the algebra (B, o)
commuting with the semigroup T, (ae R*) ([12], Chapter 3). We recall that a
homomorphism h is non-trivial if h(u) # 6, for pe .

For any measure u from B by S(u) we shall denote its support. Given a
generalized convolution o we put

A =1r: g()=1,teR"}

where p— f is the characteristic function of o. Of course, we may assume
that its kernel fulfils one of the conditions (x), (). It is clear that the set
A(p) is closed,

(6) Oe A(p),

(7 A(pov) > A(W N A().
Moreover, by formula (4),

®) . S(v) A(uv) = A(p).

Hence we get the inclusion

Aw)c N x" 1A

xeS(v)\ 10}

if v # d,. The converse inclusion is also true. Namely, if v# §, and
tex™ ' A(u) for every xeS(v)\{0}, then, by (6), txe A(y) for every xeS(v)
which, by (4), yields te A(uv). Thus

9) A= N x"TA@ if v#5,.

xeS(VI\{0}

Setting v =6, 06, and u =4, into (8) and applying (7) we get the inclusion

(10) §$(0,00,)A(6,) = A(6,).

Further, it is easy to see that

(11) le A(6,), A(@,)n(0,1)= @ in the case (»),
and

(12) A(p) = {0} (ueP) in the case (x=).
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LeEMMA 1. In the case (*) we .have the relation S(6,08,)n (1, ) # O.

Proof. Suppose the contrary, i.e. $(é, 0d,) = [0, 1]. Then, by (10) and
(11), S(6,06,) = {0} U {1} or, in other words, 6, 06, = cdy+(1—c)d, where
0 < ¢ < 1. Passing to the characteristic functions we have the equation Q2(t)
=c+(1—-c)Q2(t) which shows that Q assumes at most two values 1 and —c.
Since Q(0) =1, by continuity of Q, we get Q= 1. But this gives the
contradiction. The Lemma is thus proved.

Invariance properties of the set A(d,) are described by the multiplicative
semigroup

N ={a: T,A(6,) = A(,), a>1}.

Setting u =4, into (9) we obtain the formula
AWM= N x"1A@Gy)

xeS(v)\{0}

if v#3J,. As an immediate consequence of the above formula and the
equation A(d,) = R* we get the inclusion

(13) NAW) < A(v) (veP).

In particular,

(14) Nc AWy ifv1)=1.
Further, by (12),

(15) N =(1, v) in the case (*#)
and, by (10).

(16) S$(0,06;)n(1, 0) =N in the case (%)

which, by Lemma 1, shows that always N # @. Moreover, in the case () the
semigroup N is closed, i.e. 1 does not belong to the closure of N. In fact, the
contrary would imply N = (1, o0) and, by (14), (1, ©) = A(d,). In other
words, 2(t) = Q(0) =1 for ¢t > 1. But then the left - hand side of the equation

?Q(tx) o, (dx) = exp(—1t¥),
0

where g, is the characteristic measure of the convolution in question, would
tend to 1 when t— oo. This contradiction shows that in the case () the
semigroup N is closed.

We associate with every generalized convolution o a numerical constant
by setting

n(o) =infN.
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Of course

(17) n(c) > 1 in the case ()
and, by (15),

(18) n(o) =1 in the case (**).

We note that for the convolution *,; N = {n'*: n> 2} and

(19) 1(#q,1) = 2'%.

THEOREM 1. If 0 <0/, then n(o) < n(0).

Proof. Suppose that h is a non-trivial continuous homomorphism
from (P, o) into (P, o) commuting with the semigroup T, (aeR*). By
Lemma 3.1 in [12] the map h is of the form h(u) = Au for a certain non-
degenerate 1€ ‘R. Moreover, if u— i’ is a characteristic function of o', then

n— [(h(u))‘]' is a characteristic function of o. Therefore denoting by 4 (u) and
A'(p) the sets for the convolutions o and o' respectively we may assume
without loss of generality that

Aw =A"(Aw)  (ne'P).

Let N’ be the invariance semigroup for o’. The last equation and (13) imply
the inclusion N’ A(6,) = A(é,). Thus N’ = N and, consequently, n(o) < n(0')
which completes the proof.

LEMMA 2. For every generalized convolution o with »x(0) =x the
inequality

?x"(é,oél)(dx) <2
0

is true.
Proof. The formula

Q%) = aj? Q(tx)(6, 06,)(dx)
0

implies

1+Q() = J

0

1—-Q(tx)
m(‘sloal)(dx)
whence, by (1) and the Fatou lemma when r — 0+ our assertion follows.

Lemma 3. For every generalized convolution o with the property (x) we
have the formula

0,00, = pdo+4qd,+(1—p—q)v
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where ve B, S(v) = [n(0), ©), p, 4= 0 and
(20) 4p+3q < 2.

Proof. By (10) and (11) we have the inclusion S(é,09,)
N[0, 1] = {0} U {1} which together with (16) yields the inclusion

S(6,08,) = {0} U {1} U[n(0), ).

Consequently, the measure d, 06, can be written in the form
(21) 6,00, = pdo+qé, +(1—p—¢q)v
where ve'B, S(v) =[n(0), ) and p, ¢ > 0. It remains to prove inequality

(20). For every number ¢ (0 <c < 1) let I, denote the set of all pairs of
non - negative real numbers (x, y) satisfying the conditions

y2+4cy+4(1+c)x—4c <0, y<l-—c.

Put @, = min(2(,/c¢*+c—¢), 1—¢) and
4c—y?—4cy
4(1+¢)

It is clear that the set I, is convex and closed. Moreover, its boundary is the
union of the sets

(Pc(y) =

(22) {(x9 y) X = (Pc()’), 0 < y S ac}s

10,y): 0<y<a) and {(x, 0):0<x< l—i—c}
Hence it follows that the maximum M, = max {4x+3y: (x, y)el,} is attained
on the curve (22). Since the function 4¢.(y)+ 3y is monotone non - decreasing
in the interval 0 < y < a, we finally get the formula M, = 4¢_(a.)+ 3a, which
by a simple computation yields M, = 6(./c?+c—c)if 0<c <4 and M, =2
if $ < ¢ < 1. Consequently, M, < 2if 0 < ¢ < 1 and to prove inequality (20) it
suffices to show that (p, g)el,. for a certain ¢ (0 <c < 1). Put

—b=inf{Q(1): teR"}.
Of-course, b <1 and ji(t) = —b (teR™, ue P) which, by (5), yields b > 0.
Further, by (21),
(23) Q%) = p+qQ)+(1—p—q) [ R(tx) v(dx).
0

Since 1>2¢g>0> —b we can find, by the continuity of Q, a sequence
ti,ty, ... of positive real numbers with the property Q(t,) — q/2. Setting
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t =t, into (23) we get, when n— o
2 e

1 >p+7—(1—p—q)b

4
or, equivalently,
q*+4bq+4(1+b)p—4b < 0.

Further, taking a sequence u,, u,, ... with the property Q(u,)— —b and
setting t =u, into (23) we get, when n— o, b’< p—bg+1—-p—gq or,
equivalently, g < 1 —b. This shows that (p, g)e I, which completes the proof
of the Lemma.

A relation between constants x(o) and n(o) is given by the following
quite surprising Theorem.

THEOREM 2. For every generalized convolution o the inequality

(24) n(oy < 4
is true. The equation
(25) (o) =4

holds if and only if o = »,, where a = $x(0).
Proof. By (18) inequality (24) is obvious in the case (*+). Consider the
case (x). Then, by Lemma 3,

(26) 0,06, = pdo+qd;+(1—p—q)v
where p, g = 0,
(27) 4p+3q < 2,

ve'P and S(v) = [n(0), ). The last inclusion yields the inequality
(28) [ x* v(dx) = n(oy.

0
Applying Lemma 2 we have
(29) q+(1—p—gq) [ X v(dx) <2

(1]

which, by (28), implies the inequality
(30) (I1=p—q)n(0y < 2—gq.
But, by (27), 4(1—-p—q)>2—q >1 which together with (30) gives (24).
Further, by (3) and (19), equation (25) holds for o = #, ;. Suppose now that

for a generalized convolution o equation (25) is true. Of course, in this case o
has property () and, by (30), 4(1—p—g) < 2—q which together with (27)
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yields 4p+3q = 2. Thus

(31) p=—-

Further, by (28), |x*?v(dx)>4. Setting (31) into (29) we obtain the
(1]

ao [ o}
converse inequality [ x*®v(dx)<4. Thus [x*v(dx)=4. Since
0 0

S(v) =[n(0), ) the last equation and (25) show that the measure v is
concentrated at the point n(o). Consequently, by (31), formula (26) can be
rewritten in the form

2-3q

2—¢
61061 = 50+qél+_4—6"(o)

or, equivalently, in terms of the characteristic functions

(32) Q%(1) = ¥+qﬂ(t)+-2—;—qﬂ(n(o) t).
Put

1/ay _
(33) Foy=2209-9 g+

2
where a = % (0). By (25) and (32) the function F fulfils the equation
F*(t) =3+3F(2).

Moreover, the function F is continuous on R*, F(0) =1, F(t) <1 (teR™), F
is not identically equal to 1 and, by (1) and the continuity of the function L,
the limit
1-F(@)

12

him

-0+

exists. Applying the Forder theorem ([2], p. 216) we infer that F(t) = cosct
for a certain positive constant c¢. Consequently, by (33),

(34) Q(:)=(1—g coscrt+3.
2 2

Put g = —2 6,08 .+=16,. Then

u #_2+q 100,1/a 2+4 0-

(35) u({0}) >

2+q
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and, by (34),

P _ 2—q 1/a 1 q 1/a
u(t)—2(2+q).Q(3 r)+2Q(t)+2+qQ(2 1)

or, equivalently,

2—4q 1 q
== ma3l/¢ +§6l +2—.*_q621/a.

Thus 0¢S(x) which, according to (35), yields q = 0. By (34) we infer that
Q(t) = cosct® where ¢ > 0. In other words, by (2), 2 is the kernel of the
characteristic function of x, ;. Since the characteristic function determines the
generalized convolution we have the equation o = »,; which completes the
proof of the Theorem.

CoroLLARY 1. The convolutions =, , (x > 0) are maximal elements under
the partial order <, i.e. the relation »,, <0 yields 0 = %, ;.

Proof. Suppose that %, ; <o. Then, by Theorem 1, n(0) = n(x,,) and,
by Theorem 3.1 in [12], %(0) = x(*,,,). Consequently, n(c)*® > 4. Applying
Theorem 2 we infer that n(o)*® =4, n(0) = (%), *#(0) =x(%,,) =20
which finally yields o = », ,.

We conclude this paper with the following simple remark. For any
function feC, by Conv(f) we denote the closed convex set spanned by
{T.f: aeR™}. As a consequence of Theorem 2 we get the following
statement.

CoROLLARY 2. Suppose that feC, and the following conditions are
Sulfilled:

(@) f(t) = 1—1t>*L(t) where a > 0 and the function L is slowly varying at
the origin, .

(b) there exists a probability measure A for which

u

lim aj?f(tx)).(dx) <1,

t—a 0
(c) the set Conv(f) is closed under pointwise multiplication of functions,
(d) there exists a function ge Conv(f) with the properties g(1) =1 and
g@t) <1 for te(l, 2.
Then f(t) = cosct® for a certain positive constant c.

Proof. By Theorem 2 in [8] conditions (a), (b) and (c) are sufficient for
the function f to be the kernel of a characteristic function of a generalized
convolution, say o. Moreover, Conv(f) = {i: ue B}. In particular g = ¥ for
a certain ve B. By (d) 1€ A(v) and A(v) (1, o0) = [2'*, c0) which by (14)
yields the inclusion N <[22, o). Consequently, n(o) = 2!/%. On the other
hand, by (a), %(0) = 2a. Thus we have the inequality #7(0)*® > 4. Applying
Theorem 2 we infer that o = %, , and, consequently, the function f is similar
to the function (2) which completes the proof.
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