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ON FIXED POINT FREE INVOLUTIONS OF R'x §*

BY

GERHARD X. RITTER (GAINESVILLE, FLORIDA)

In 1962, Tao [4] showed that if A is a fixed point free involution
of 8! x 8%, then the orbit space S8' x 8*/h must be homeomorphic to either
8! x 8% or 8* x P? of P* # P? or the non-orientable 2-sphere bundle over S'.
The question naturally arises as to whether or not similar results can
be obtained when the compact factor S' is replaced by the non-compact
factor R'. We answer this question affirmatively by showing that if
is a fixed point free involution of R' x 8% then R' x 8*/k must be homeo-
morphic either to R'x P? or to the open 3-dimensional Mébius band.

It follows from Chapter 2 of [3] that 2 may be viewed as a piecewise
linear homeomorphism on some triangulation of R'x 8. For this reason
we shall consider all objects of this paper from the polyhedral point of
view.

The interior of a topological manifold M will be denoted by int M,
and the boundary of M by dM. The Euclidean »n-dimensional space will
be denoted by R", and the projective n-space by P". The n-dimensional
sphere and the n-dimensional ball will be denoted by S™ and B", res-
pectively. A space homeomorphic to R' x 8! will be called an open annulus.
The open n-dimensional Mobius band is the space obtained from
R" —int B® by identifying antipodal points on d(R"—int B") = §"~'. We
note that the space thus obtained is homeomorphic to the space obtained
from P" by removing an n-ball, since P" can be obtained from B" by
identifying antipodal points on dB".

It will be convenient to view R' x 8% as (—1,1) x 82

LEMMA 1. If h i8 a fized point free involution of R'x 8%, then there
is a 2-sphere S in R' x 8% which is isotopic to 0 x 8* and such that h8 = 8.

Proof. Let § =0x 8% If hS # 8 and SnhS # @, then, by using
small isotopic deformations whenever necessary, we may suppose that
S8 NhS consists of at most a finite number of disjoint simple closed curves.

We shall call a component J of SNAS innermost on 8 if the disc D < 8
bounded by J has the property that DNhS = J. In this case we shall
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also say that D is an innermost disc on 8. An innermost curve and an
innermost disc on AS are defined analogously. Let J be a component
of SNhS such that J is innermost on 28, and let.D = i8S be the disc bounded
by J. Let D, and D, denote the two discs on § whose common boundary
is J. Now, either hD < D, or hD < D,, and we assume, without loss of
generality, that AD c D,. Since 8 does not bound a 3-ball in R!x §?
it is not difficult to see that either 8, = DuD, or 8, = DuD, cannot
bound a 3-ball in R'x 8%. We consider these two cases separately.

We first suppose that S, does not bound a 3-ball in R!x 8% If
hJ =-J, then

8, = h(DuUD,) = D,uD = §,.

By our construction of §;, by a small deformation of 8, we have
8;n8 = @ without loosing the property that 28, = 8, and that S, does not
bound a 3-ball in R} x 8% Now § = 0 x §° splits R' x 8* into (—1, 0] x S*
and [0,1)x 8® and we may assume, without loss of generality, that
S; < (0,1) x 82

Let R be obtained from [0,1) x 8* by filling in 9 ([0,1) x 8% = 8
with a 3-ball B3, Then 8, is a polyhedral 2-sphere in E* and, hence, S,
bounds a 3-ball B? in E* such that B?® < int B}. By the Combinatorial
Annulus Theorem [5], ¢l(B}— B?®) is homeomorphic to [0, 1] x 8*. Hence,
8, is isotopic to 0 x 8% in R! x §°

If hJ # J, choose a simple closed curve J' < D, sufficiently close
to J-and such that the annulus 4 = D,, bounded by J and J’, has the
property that AnhkS = J. Let D' be a disc sufficiently close to D and

such that
D'nhD" = D'nhS =@, D'NnS =0D" =J'’

and 8, = (D, —A4)uUD’ does not bound a 3-ball in R'x 8% By construc-
tion, 8;NAhS, is a strict subset of SNKS.

If 8, does not bound a 3-ball in R'x 8 and hJ # J, then S,NhS,
= D,NhD, is a strict subset of SNAS. If hJ = J, choose a simple closed
curve J' < D, such that the annulus A < D,, bounded by J and J;,
has the property that AnhS8 = J. Now choose a disc D’ sufficiently
close to D and such that

D'NhD" =D'nh8 =B, D'NS =0D" =J’

and 8, = (D,— A)UD’ does not bound a 3-ball in R'x §%. By construec-
tion, S,NAS, is a strict subset of SNAS.

Thus, in either of the above two cases, there is always a 2-sphere 8’
which does not bound a 3-ball in R'x §* and such that either AS’ = 8’
or 8'nhA8’ is a strict subset of SNAS. Furthermore, by using the previous
argument for S,, we see that 8’ is isotopic to S. Since the number of
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components of SNAS is finite, by simply repeating the above procedure
a finite number of times we can obtain a 2-sphere S’ such that 8" is
isotopic to 0 x S? and either A8 = 8" or 8" NhS"’ =@.

For 8" nh8” =@, let X, ¥ and Z denote the closures of the com-
ponents of R'x §*—(8'UhS’). Since 8 is isotopic to 0x 8% we
may assume that X, Y and Z are homeomorphic to (—1, —1/2]x 8%
[—1/2,1/2]x 8% and [1/2, 1) x 8% respectively, whence, hY = Y. Let §*
denote the 3-sphere obtained from Y by filling in Y = 8 UhS" with
two 3-balls. Since h is a fixed point free involution of Y, h extends natu-
rally to a fixed point free involution of 8°. It now follows from [1] that
there is a 2-sphere 8’ =« Y which separates §'' from A8’ and such that
h8""" = 8. This proves Lemma 1.

Henceforth, we let § < R'x 8% denote the 2-sphere of Lemma 1,
and M, (i = 1,2) the closed complementary domains of § in R'x 8%
Since 8 is isotopic to 0 x 8% in R' x 8%, M, is homeomorphic to [0, 1) x §?
for ¢« =1, 2. *

LEMMA 2. If hM; = M;, then there is an open annulus A < R'x §?
such that hA = A, ANS is a simple closed curve, and A separates R' x §*
into two components, each homeomorphic to R' x B2

Proof. Let R® be obtained from M, by filling in dM, = § with
a 3-ball. Then h extends naturally to an involution of R® with one fixed
point and we may extend h further to R*uU{co} = 8 by setting k(o) = oo.
By [2], there is a 2-sphere 8% c 8% orthogonal to 8, invariant under &
and containing the two fixed points. We set 4, = S2NnM, and let A, =« M,
be defined analogously. Furthermore, since hdA, = 04, < 8 = IM,,
we may choose 4, such that d4, = dA,. The open annulus 4 = 4,VA4,
now satisfies the conclusion of Lemma 2.

THEOREM 1. If h i3 a fized point free involution of R' x 82, then R' x S*/h
is homeomorphic either to R' X P? or to the open 3-dimensional Mobius
band.

Proof. If hM, = M,, then R'x 8*/h may be viewed as being ob-
tained from [0, 1) x 8% by identifying antipodal points on the 2-sphere
2([0,1) x 8?) = 0x 8% Thus, R'x8*/h is homeomorphic to the open
3-dimensional Mdbius band.

If A M, = M,, then, by Lemma 2, there is an open annulus A which
separates R' x §? into two homeomorphic components N, and N,. Since
hA = A, either hN, = N, or hN, = N,. However, since N, is homeo-
morphic to R'x B? and h is fixed point free of period 2, hN, = N, is
not possible. Therefore, kN, = N, and R' x §? [k may be viewed as being
obtained from R'x B? by identifying antipodal points on d(R'x B?)
= R' x 0B%. Thus, R'x 8%/h is homeomorphic to R'!'x P?. This proves
Theorem 1.
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