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Let G be a locally compact group, and B(@) its Fourier-Stieltjes al-
gebra, a8 described by Eymard [4]. Then B(@) is the space of all matrix
coefficients

g—=>L<n(g)é,n> (&, neH,)

of unitary representations = of @ on Hilbert spaces s#,, which is an algebra
of functions under pointwise operations because the direct sum and tensor
product of two unitary representations is again a unitary representation,
and which is closed under complex conjugation (written™) because the
contragradient of a unitary representation is also unitary. Moreover,
equipped with the norm o

lullp = min{||fjlnll: » = (=&, D},

B(@) is a Banach algebra. .

The Fourier algebra A (G) of @ is an interesting ideal of B (@) with many
equivalent characterizations. We define A (G) to be the space of all matrix
coefficients of the regular representation of G on L*(@), L*(@) being the
usual Lebesgue space on G relative to left Haar measure, and then A (G)
can be described as the closure in B(@) of L*(@)NnB(@). An important
property of the semisimple Banach algebra A (@) is that its maximal ideal
space can be identified naturally with G: we write , for the multiplicative
linear functional u +— u(g). We shall use results of Eymard [4] without
further comment, and we shall also cite without reference some results
on unitary representations to be found in [3].

If @G is Abelian, A(@) and B(@) are the images under the Fourier
transformation of the convolution algebras of integrable functions and
bounded measures on the dual group of G. These spaces have intensively
been studied, as a glance at the references in [6] or [7] will attest. A fa-
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miliar result of Williamson [8] is that B(@) is symmetric if and only if G
is compact. (We remind the reader that a Banach algebra of functions
is symmetric if 6(%) = é(u)~ for all multiplicative linear t'u.nctlonals é and
all functions wu.)

If @ is not Abelian, things are certainly different. Liukkonen and Mis-
love [5] have shown that, for certain non-compact motion groups, B(&)
is symmetric. Here we prove a similar result for connected semisimple
Lie groups with finite centre.

Let G be a semisimple Lie group, connected with finite centre. It is
well known that @ has a finite covering group @° of the form

o L] Lo}
H/ xH,x ... xH,,

where H; is compact and H; is non-compact and simple. Let D be the
finite central subgroup of G° such that @ = G°/D. Let H, be the image
of H; in @, i.e., H; D/D. Let & be the set of subgroups 8 of G which are
the images of subgroups 8° in G° of the form

H) xH; x ... xH; ~ With @ S {j,jzy eeesfm} € {1, 2, 00y 0}

THEOREM. Let G be a connected semisimple Lie group with finite centre
and let & be as described above. Then the maximal ideal space A of B(@) is
4=U @8,

Ses
G is dense in A and B(@) 18 symmetric.

Proof. In the first part of the proof, we consider irreducible unitary
representations = of G. We let 8 be the largest subgroup in & on which =
is trivial, and then = can be viewed as a representation of G/8. We show
that there exist a constant independent of = and an integer ¢ such that
the matrix coefficients (n&, ), as functions on @G/8, belong to L*(G/8),
and

IK7&y M) llag < ClIEN I

The second part of the proof treats B(@). We show that B(G) is the
direct sum of subalgebras Bg(@) (S € &) of B(G)-functions constant on
cosets of § but no larger 8’ in & and that the maximal ideal space
of Bg(@) is G/S. :

Finally, this information is used to prove the theorem. Without
further ado, we take the first step.

Let = be an irreducible unitary representation of G. Then n “lifts” to an
irreducible unitary representation of G°, which is the external tensor
product of irreducible unitary representations n, and =; of H, and H°
Accordmg to results of the author [2], either n; i8 the trivial representa-
tion of H; or there exists a finite p; such that all the matrix coefficients
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of ; lie in L% (Hj). Let 8° be the product of the H; for which s, is trivial,
and let p be the maximum of the p,. Then = can be viewed as a represen-
tation of G°/8°.

Now o, can be viewed as the Hilbertian tensor product of Hilbert
spaces at",,j. Let & be a vector of the form {,®{,® ... ®{,. Then {(=§, &),
viewed on G°, can be written as a product

n

ok, Ey(hoy hyy ooy ) = [ [ <my(B) &, £,

1
and this function, now viewed as a function on G°/8°, lies in L”(G°/8°).
Further, =, viewed as a representation of @& /8°, is jirreducible. Thus
it follows from [1] that all matrix coefficients of x lie in some L (G°/S°)
and B

1) IK=8, Mg < C 6l il

where C does not depend on =. Finally, n is constant on cosets of D
in @°, so the estimate above can be transferred to the quotient group
(& [8°)|(DS°[8°), i.e., to @[S, completing the first step. |

_ The second step begins with the observation (cf. [1]) that the set
Gy, of irreducible unitary representations n of G (more properly, equiva-
lence classes thereof) with the property that = is trivial on 8 and that
(1) holds on @G/8 is closed in @ in the Fell topology. As a consequence, the
unitary dual @ of @ is the disjoint union of the sets G4, each of which is the
union of the increasing family of closed sets ésq a8 g ranges over the pos-
itive integers.

We continue by observing that any unitary representation = of G
on a separable Hilbert space can be expressed as a direct integral. We can
therefore decompose =:

= 2 g,

where ng is the part of n supported in (;‘s. We can now decompose any
« in B(@) in the obvious manner:

U = Zus.
Se&
Thus we have a decomposition of B(G):

B(@) = Y °B(®.

Se¥
A function % in Bg(@) has a direct integral decomposition
i(x)
u= [apm) Y <nk, 1k,
1

Og
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where
i(=)
[ au(m) D' 11Inkl < oo.
4g 1

Since és is the union of the increasing family of closed sets é’sq and
is a regular Borel measure, for any small positive £ we can find a ¢ such that

i(=)

[ au@ Y 1E5 I < o
d,g/dsq 1

Let u, be the part of u supported by é‘sq; then
lu —u,llp < .

Moreover, u, lies in L*¢(@/8) (see [1]), and a fortiori-to C,(G/S). Since
w can be approximated by these %, in B(G/S) and hence uniformly,
u itself is in Cy(G/8).

We define Cg(@) to be the space of continuous functions on G which
are constant on cosets of 8§ in G and which, as functions on G/8, vanish
at infinity, and then

B4 (@) = B(G)nCgx(G).
It is now clear that Bg(@) is a Banach algebra and that

(2) lBs (@) Bgse(G) € Bgne(G).

To complete the second step, we note that if § is a non-zero multipli-
cative linear functional on Bg(@), then d(u) is non-zero for some « in
Bg(@), and so, by the continuity of 4, (%,) is non-zero for some positive
integer q. Now d(u,)? = d(ud) and %, as a function on G/8§, is square-inte-
grable, hence in A (G/S). Thus ¢ is non-trivial on 4 (G/8), where it must
be a point evaluation §,5. Pick » in A(G/8) with u(g8) = 1. For v in
B¢ (@), viewed as a function on G/8, uv is in A(G/8), so that

(3) 8(v) = 8(uv)/d(u) = dy5(uv)/dps(u) = v(g8).

Consequently, the maximal ideal space of Bg(@) is contained in
G/S; on the other hand, point evaluations J,¢ are multiplicative linear
functionals on Bg(@), so that the maximal ideal space of Bg(G) is exactly
G /8. The second step is completed.

For further investigation, we suppose that 4 is a multiplicative linear
functional on B(@) which does not annihilate Bg(G). Then 4§ is a non-
trivial multiplicative linear functional restricted to Bg(@), where it must
be a point evaluation d,s. Let Bg, (@) be the space of B(G)-functions con-
stant on cosets of 8 in G. Repetition of the argunment in (3) shows that 8
is also the point evaluation J,5 on By, (&).
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Now we can decompose 4. Let d be a non-trivial multiplicative
linear functional on B(@). If é is non-zero on Bg (@) and on Bg (@), then
(2) shows that J is also non-zero on Bg. s (G). There is therefore a smallest
8 such that é does not annihilate Bg(@), and that 4 annihilates Bg. (@)
unless 8 < 8, that is, J is non-trivial on Bg, (@), where it acts as a point
evaluation 4,5, and & annihilates the rest of B(G). Let Ag be the space
of such functionals. The Ag is contained in G /8. On the other hand, given
g8 in G/8, the multiplicative linear functional 4,5 can be defined by

8 o(u) = {'“(9) for u € By, (@),
o8 0 for v € Bg.(G), 8’ 2 8.

We have, therefore, an identification of 4y with G¢/8 and of 4 with
U G/8.
% Now we consider the density of @G in 4; of course, we identify G with
4. For a non-trivial 8, we suppose tha.t 8° is Hy x Hy X ... xH ,
and let (g,) be a sequence in 8° whose projections on ea.ch of the factors
Hj (5 =Jj1yJey --+»Jm) 80 to infinity. Let (g,) be the sequence of images
in :G If u'is in B, (@), then

dp5(u) = u(g) = limu(gg,) = lim4,, ().
However, if « is in Bg, (@) and 8 ¢ §’, then u is constant on cosets
of 8N8’ but vanishes at infinity in the directions H;, where H; = 8 and
H; & §'. It then follows that

lim 8,, (u) = 0 = 8,5(u).

So d,¢ is the limit of the 4,,, and G is dense in 4.

Finally, we discuss possible pathology of B(@). Since G is dense in 4,
8(%@) = 6(u)~ for any # in B(@) and any éin 4. Thus B(@) is symmetric.
S. W. Drury pointed out to me that another consequence of the density
of G in A4 is the absence of a Wiener-Pitt phenomenon: if « in B(@) takes
positive real values, bounded away from zero, then « is invertible in B(G).
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