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The object of this paper is the strong game of G. Choquet [2], further
studied by E. Porada [11], F. Topsge [17], and the author [14, 15, 16]. The
paper is divided into two sections. Section 1 deals with metrizable spaces
and, according to the complete description of winning sets for both players,
it contains various solutions of the determinacy problem depending on extra
set -theoretic assumptions. In particular, the Borel determinacy problem
P 1148, posed by E. Porada [11], is solved affirmatively. Section 2 deals with
non - metrizable spaces and contains various results and open problems
concerning the winning sets of the players.

For the topological background the reader is referred to the monograph
of R. Engelking [4].

The strong game of G. Choquet [2, 3], denoted here by Ch(X, Y), is
defined as follows. There are given a topological space X and a subset Y of
X. Player I chooses a point x, in Y and its open nbhd (= neighbourhood)
U, in X, and then Player II chooses an open nbhd V; of x; in X with
Vi « U,. Now Player I chooses a point x, in V; nY and its open nbhd U,
with U, = V|, and then Player II chooses an open nbhd V, of x, with
V, =« U,, and so on Player II wins the play ((x,, U,), ¥V}, (x5, Uy), V5, ...) of

Ch(X, Y)if Yn ﬂ V,# 0O, and otherwise Player I wins. (Notice that in [2,

3, 17] the players l and II are called B and a respectively.)

E. Porada [11] considered a game, denoted here by P(X, Y), which he
called the game of Choquet, but P(X, Y) is slightly different from Ch(X, Y).
The game P(X, Y) is played in the same way as Ch(X, Y), but Player Il

wins if @# () V, <Y, and otherwise Player I wins.

n=1
Clearly, the games Ch(X, X) and P(X, X) coincide. Let Ch(X) denote
the game Ch(X, X). Moreover, it is easy to check that if X is a metrizable
space, then the games Ch(X, Y) and P(X, Y) are equivalent. In general,
however these games are not equivalent. For, let X be any space containing
a point x such that {x} is not a G,-set in X. Then Player 1I has a winning
strategy (w.s. for short) in Ch(X, {x!), but Player I has a ws. in P(X, {x)}).
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1. The games in metrizable spaces. In this section X is assumed to be
a metrizable space and therefore we do not need to distinguish between
Ch(X, Y) and P(X, Y). Moreover, for metrizable space X the game
Ch(X, Y) is equivalent to Ch(Y). .

THeorREM 1.1 (G. Choquet [2], p. 146). Player Il has a w.s. in
Ch(X, Y) iff Y is an absolute Gg-set (i.e., Y is completely metrizable).

In a characterization theorem for Player I, proved by E. Porada [11],
Theorem 5.3, there are, however, two minor errors. First, the set S considered
on p. 349 is not compact; in fact, S is a nowhere locally compact G,-set in
Ng, and thus S is homeomorphic to the space P of irrational numbers.
Second, the inclusion h(S) = X on p. 351 (in Theorem 5.3) should be
replaced by h(S) = X, where X is the completion of X. When introducing the
above corrections and taking account on the facts that h(T) is
homeomorphic to the space Q of rational numbers and h(T) is a G4-set in
X, we get the following

THEOREM 1.2. Player I has a (stationary) w.s. in Ch(X, Y) iff Y contains
a copy Z of the space Q so that Z is a Gs-set in Y.

After this we are now ready to make use of some auxiliary results to
characterize better the winning sets of Player I. Recall that X is said to be a
strongly Baire space (or an F,; - space) if each closed subset of X is a set of the
second category in itself. W. Hurewicz proved in [8] that a metrizable space
is a strongly Baire space iff it does not contain a closed subset
homeomorphic to Q. Moreover, it is easy to check that if Z is a G,-set in a
T, -space Y so that Z is homeomorphic to Q, then Z is a set of the first
category in itself. From these considerations we get

THEOREM 1.3. The following conditions are equivalent:

(@) Y is not a strongly Baire space.

(b) Y contains a closed subset Z homeomorphic to Q.

(c) Y contains a Ggz-set Z homeomorphic to Q.

(d) Player I has a w.s. in Ch(Y) (and also in Ch(X, Y)).

(e) Player I has a stationary w.s. in Ch(Y) (and also in Ch(X, Y)).

Note that in both Theorems, 1.1 and 1.3, the existence of a w.s. does not
depend on the space X. Moreover, if a player has a ws., he also has a
stationary w.s.

Now we refer to another result of W. Hurewicz [8]: If Y is a CA-set in
a Polish space X, then Y is a strongly Baire space iff Y is a G4-set in X.
Hence, by Theorems 1.1 and 1.3, we get the solution of the Borel determinacy
problem posed by E. Porada ([11], p. 353, P 1148), and even more:

CoroLLARY 14. If Y is a CA-set in a Polish space X, then the game
Ch(X, Y) is determined.

The answer for analytic non - Borel sets depends, however, on the extra
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axioms of set theory. In the sequel we shall deal with various extensions of
ZFC or ZF.

Notice that if Y is a subset of a Polish space X so that X —Y is totally
imperfect, then Y is a strongly Baire space, i, Y does not contain a
relatively closed subset Z homeomorphic to Q. For, if Z is a copy of Q
contained in Y, then Z—Z ¢ X —Y, because Z—Z is an uncountable G, -set
and X —Y is totally imperfect. Thus Zn Y # Z, ie, Z is not relatively closed
in Y.

It was announced by K. Gd&del [6] and proved by P. S. Novikov [10]
that the axiom of constructibility implies the existence in the closed unit
interval J of an analytic set whose complement is totally imperfect. Hence we
get

CoroLLARY 1.5. Assuming the axiom of constructibility there is an
analytic set Y = J such that the game Ch(J, Y) is not determined.

On the other hand, it follows from the results of J. R. Steel [13] and L.
A. Harrington [7] that the axiom of analytic determinacy (for the binary
game) is equivalent both to the proposition that all analytic non -Borel sets
in J are Borel isomorphic and also to the proposition that every analytic
non - Borel set in J is universal, in the generalized sense, for the analytic sets
of J. Clearly, each analytic non-Borel set in J that is universal, in the
generalized sense, for the analytic sets in J, contains a relatively closed subset
homeomorphic to Q (cf. [12]). Hence we get

CoROLLARY 1.6. Assuming the axiom of analytic determinacy (for the
binary game), the game Ch(J, Y) is determined for each analytic set Y < J.

Furthermore, V. G. Kanovel announced in [9] that the statement “each
absolutely projective strongly Baire separable metric space is an absolute G,”
is consistent with ZFC (Theorem 3), and the statement “each strongly Baire
separable metric space is an absolute G;° is consistent with ZF+DC
(Theorem 4). Hence we get

CoroLLARY 1.7. The statement “the game Ch(X, Y) is determined for
each absolutely projective subset Y of a separable metric space X is consistent

with ZFC.

CoROLLARY 1.8. The statement “the game Ch(X, Y) is determined for
each subset Y of a separable metric space X is consistent with ZF + DC.

Notice that the axiom of choice yields the existence of Bernstein sets in J.
Moreover, each Bernstein set in J is a strongly Baire space which is not an
absolute G;. Therefore DC in Corollary 1.8 cannot be strengthened to AC.
Finally, the axiom of constructibility implies the existence of a Bernstein set
Y < J such that Y is an absolute PCA n CPCA -set (see [6] and [10]). Thus
the statement on Ch(X, Y) in Corollary 1.7 does not hold in the
constructible universe.
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2. The games in non- metrizable spaces. In this section each space is
assumed to be completely regular. It turns out that without a suitable
assumption on X and Y the games Ch(X, Y) and P(X, Y) point out various
singular and accidental properties, because, in general, none of the players
can force the result of a play to be a singleton.

For the next considerations we recall the notion of Wj-set introduced
by H. H. Wicke and J. M. Worrell, Jr. [18].

A subset Y of a space X is said to be a W;-set in X if there is an indexed
family {W(t,, ..., t): (t1, ..., t)eT", ne N} of open sets in X so that for
each (t,,1,,..)e TV

Wty, ..., tatys1) < W(ty, ..., t),
YcU{W@): teT},
Wy, ...t)nYcU{W(t,, ..., t, 1): teT},
N{W(t,,...,t): neN} Y,

where T is an index set and N is the set of positive integers.

A subset Y of a space X is said to be a generalized G,-set in X if for each
xeY there is a G;-set G in X with xeG c Y.

Clearly, each G;-set is a W;-set, and each W;-set is a generalized
G;-set.

The notion of Wj-set is related to a game denoted by WW (X, Y). This

an
game is played as P(X, Y) but Player II wins if () V, < Y, and otherwise

n=1

Player 1 wins. It is easy to verify the following
THeorem 2.1.  Player II has a w.s. in WW(X, Y) iff Y is a Wj-set in X.

By a routine argument (cf. [14], Theorem 1) one can derive the
following

THEOREM 2.2.  Player 11 has aw.s. in P(X, Y)iff Y is a W;-set in X and
Player II has a ws. in P(Y, Y).

THEOREM 2.3. Assume that Player Il has a ws. in P(X, X) and
O # Y c X. Then Player Il has a ws. in P(X,Y) if Y is a Wy-set in X.

By a general theorem of [5] any ws. in 2.1 can be (equivalently)
replaced by a stationary w.s. Hence one can derive the analogues of 2.2 and
2.3 for stationary strategies as follows.

THEOREM 2.4. Player Il has a stationary ws. in P(X, Y) iff Y is a W;-
set in X and Player Il has a stationary w.s. in P(Y, Y).

THEOREM 2.5. Assume that Player 11 has a stationary ws. in P(X, X)
and @ # Y c X. Then Player 11 has a stationary ws. in P(X,Y)if Yisa
W;-set in X.
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From 2.2, in particular, we get

CorOLLARY 2.6. If X is countably compact and @ # Y c X, then Player
Il has a (stationary) ws. in P(X,Y) iff Y is a Ws-set in X.

The case of compact X was studied in [15, 16] so we left the topics
aside. From the above considerations it follows, however, that “modulo W, -
sets” the study of strategic options of Player II in the games Ch(X, Y) and
P(X, Y) is reduced to the one of Ch(Y).

Recall that a subset Y of a space X is said to be Gs-dense in X if
WY # @ for every nonempty G;-set W in X.

The statements in Theorem 2.7 below are easy to verify.

THEOREM 2.7. 1° If Y is Gs-dense in X, then Y is dense in X. 2° If Y
is Gs-dense in X and X is metrizable, then Y = X. 3° If Y is G4-dense in X
and Player II has a w.s. in Ch(X), then Player II has a w.s. in Ch(Y). 4° If
Y is dense in N* = BN —N, then Y is Gs-dense in N*.

From 3° and 4° we get

Example 28. Let Y be a dense subset of N* = BN — N. Then Player
IT has a (stationary) w.s. in Ch(Y).

Consider the following completeness -type properties:
(1) Player II has a stationary w.s. in Ch(X).

(2) Player II has a Markov ws. in Ch(X).

(3) Player II has a ws. in Ch(X).

(4) There is an open base # for X such that () B,# @ whenever
n=1

B,e # and B,,, < B, for each neN.
(5) There is a sequence #4,, #,,... of open bases for X so that

(\ B, # @ whenever ky <k, <..., B,e#, and B,,, c B, for each neN.
n=1

(6) There is a sequence #,, #,,... of open bases for X so that
N B,# O whenever B,e#, and B,,, < B, for each neN.
=1

m = @
prd

THEOREM 2.9. &) N ﬂ (3)
5 ——= (6

The above implications are easy to check. It is, however, an unsettled
question which of these implications can be reversed. Among the
completeness properties (1)—(6), the property (3) points out rather a peculiar
behavior (cf. 3° above). Also, notice that none of (1)-(6) is a monotonic
property in the sense of [1].

Now we shall consider strategic options of Player 1. Again, by a general
theorem of [5], we derive the following
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THeEOREM 2.10. Player I has a ws. in Ch(X, Y) iff .Player 1 has a
stationary w.s. in Ch(X, Y) of the form (x,, U,) =5(0) and (X441, Ups1)
= s(x,, V,) for every neN. (The same also holds for Ch(X).)

The next theorem provides a characterization of winning sets for Player
I in Ch(X, Y).

THEOREM 2.11. Player I has a w.s. in Ch(X, Y) iff there is a collection
{#B(U): U is open in X} of families of open sets in X so that

(a) #(U) is a nbhd base of a point in UNY,

(b) Be #(U) implies B = U,

() Yn () B, = O whenever B,c #(X), B,e #(B,), Byc #(B,), ...
n=1"
Similarly, for the game P(X, Y) we have

THEOREM 2.12. Player I has a ws. in P(X, Y) iff there is a collection
'4(B,, ..., B,): Bic #(0), B,c #(B,), ..., B,e#(B,,...,B,_;), neN} of
families of open sets in X so that

(a) #(0) is a nbhd base of a point in Y and #(B,, ..., B,) is a nbhd base
of a point in B,NY,

(b) Be #(B,, ..., B,) implies B c B,,

(c) either () B,=@ or
n=1
B,c#(B,, B), ...

Both characterizations, 2.11 and 2.12, are related to dual games
Ch; (X, Y) and P,(X, Y) to the games Ch(X, Y) and P(X, Y) respectively.
In Ch, (X, Y) Player I chooses a nbhd base #, of a point in Y, and then
Player 11 chooses a B;e#,. Now Player 1 chooses a nbhd base #, of a
point in B; N Y with B < B, for each Be #,, and then Player II chooses a
B,e#,, and so on. Player II wins the play (#,, B,, #,, B,,...) if

(\ B¢ Y whenever B,ec #(0), B,e #(B,),
=1

Yn () B,# 0O, and otherwise Player I wins.
n=1
Hence, Theorem 2.11 can be rephrased as follows: Player 1 has a
(stationary) w.s. in Ch(X, Y) iff Player I has a stationary w.s. in Ch, (X, Y).
Similarly, Player II wins the play (#4,, B,, #,, B,,...) of P,(X, Y) if

O # () B,c Y, and otherwise Player I wins.
n=1

Hence, Theorem 2.12 is equivalent to the following statement: Player I
has a ws. in P(X, Y) iff Player I has a ws. in P, (X, Y). Note that the last
statement remains true if both ws. are replaced by stationary w.s.

THeOREM 2.13. If Y is not a generalized G4-set in X, then Player I has
a stationary w.s. in P(X, Y).

For, let x be a point of Y so that there is no G;-set G in X with
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xeG < Y. Putting s(9) = (x, X) and s(V) =(x, V) for any open nbhd V of
x, we get a stationary w.s. for Player L

To avoid this trivial case in the study of P(X, Y) we may assume that Y
is always a generalized G4-set in X. This assumption, however, is not very
useful toward a characterization of winning sets for Player I. The following is
a partial result proved by a standard argument.

THEOREM 2.14. If O #Z < Y < X, where Z is qf the first category in
itself and is a Wy-set in Y, then Player I has a stationary ws. in P(X, Y).

From 2.14 we get immediately

CoroLLARY 2.15. If X contains a nonvoid Wj-set which is of the first
category in itself, then Player I has a stationary w.s. in Ch(X).

However, it is an unsettled question whether the converse to 2.15 (resp.
2.14) holds. (P 1301)
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