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Z. CIESIELSKI (POZNAN)

Let ¢(t) be a continuous function of bounded variation on <a, b),
and let N,(z) denote the number of solutions of the equation ¢(tf) = =,
tea, b); N,(x) may be infinite. The function N, is known as the Banach
indicatriz (cf. [4]). It was proved by Banach [1] that

b

(1) [ Now)dy = [ldp(t)l = varg.

We shall call the function ¢ piece-wise monotonic if there exists
a finite partition ¢ =1, <?, < ... <t, = b such that ¢ is monotonic
(non-decreasing or non-increasing) in each interval <t;_,, #).

Let ¢ be continuous and piece-wise monotonic and let m,(z) denote
the number of components of ¢~1(z). Obviously, 0 < my(z) < co. Now
define

My (1) it o #e¢(a), ¢ # @),
Nio) = my@)—} i @ =p(a) £p(d) or 2 = p(b) # pla),
ml@)—1 it @ = pla) = p(b).

It is easy to see that Ng(z) < N,(z) for all xe(—oo0, co), and the
equality holds except for at most a countable set of points. It was proved
by Kac [3] that for piece-wise monotonic ¢ with continuous derivative
the formula

b

1 00
@) Fi(@) = = [ au| [ cosulp(t)—a) idg(t)]

a

holds for all real x. Kac established this formula without referring to the
Banach indicatrix. It turns out, however, that by the methods of Fourier
analysis a somewhat stronger result than (2) can be deduced from formula
(1). We are also able to derive a similar formula for N, under the assump-
tion that ¢ is continuous and of bounded variation on <(a, b).
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In order to state our results we need the definition of (C, k) summa-
bility for integrals. Let a be a continuous function on {0, oo). Then we
put (k > —1) (ef. [2], p. 111)

oo T
(c,k)f a(u)du = lim (1—%)ka(u)du.

T—oo 0

It is easy to see that

, l)fa(u du—hm—f[f (w)du] da.

THEOREM 1. Let ¢ be a continuous function of bounded variation on
{a, b)>. Then

oo b
No(@) = (€, 1)~ [ au [ cosu(p(t)—2) dp o]

for almost all real x. Moreover, the right-hand side of this equality converges
to 3[Ny(2,)+Ny(x_)] at each point x, where the limits No(x.) exist. The

convergence is uniform over each finite and closed interval of continuity
of N,.

Proof. Notice that the Banach result implies N,eL'(—oo, co).
Let J =<¢,d), —co<e<d < oo, and let Igz(x) be 1 if zeE and O if
x¢E. Applying (1) to the function

@s(t) = max|e, min(d, ¢(1))]
we obtain

(3) [ Noy()dy = [ L;(y) N, (y)dy

b
= [ e = [L(p(t)ldp ().

o~ 1)

Now let £ be a Borel subset of (—oo, o0). Then using (3) we can.
show that

o0 b
(4) [ Iz N,(v)dy = [Iz(p(®)lde(t),

where the left-hand side is the Lebesgue integral and the right-hand
side is the Lebesgue-Stieltjes integral. Formula (4) implies that

00 b
(5) [F@) N (9)dy = [flp(t)dp(2)|
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holds for any bounded, real valued Borel function. In particular, if
f(y) = cosu(x—y), where x and u are fixed real parameters, equation (5)
gives

o0 b
(6) J ¥y ()cosu(y—a)dy = [ ecosulp(t)—a)ldp ().

The partial integral of the Fourier repeated integral of N, is

8. (@) =;1r—fwdu[ fmmy)msu(y—w)dy]’

— 00

hence by (6)
o b
1
S, (@) = ;of du [!cosu(rp(t)——w) |d<p(t)|]

To complete the proof it is sufficient to apply the (1-21) Theorem from
[6], p. 246.

The suggestion was made to me by Lee Lorch to employ a Tauberian
theorem to improve the summability in Theorem 1. This method leads
to a slightly stronger result than that obtained by Kac.

THEOREM 2. Let ¢ be a piece-wise monotonic and continuous function
on {a,b)>. Then for each real x and for any k > —1 we have

oo b
.N;(.’L‘) = (C, k)%f duUcosu(qo(t)—w) |d¢p(t)|].

In particular, the integral converges to Ny ().

Proof. Let I,(y) be 0 if y #« and 1 if y = x. Then by the very
definition of N, we have

Ni(x) = 1 var I,(p(t)).
¢ 2 act<h

The total variation of a given function of bounded variation is an
additive function of intervals. Therefore

n

(7) Ni@) =34 var L(p(t),
i=1 <G-pvtpd

where <#_,,t), j =1,...,n, are the intervals of monotonicity of ¢.
Let

yi(®) = var Ix(‘P(t))9 j=1,..,n.
-1t
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One checks that
yx) =0 i () = e,

and if () #e(t_1), oy = min[e(t_,), ¢(t)], B = max[e(t;_,), ¢(t)],
then

2 for we(ay, By,
v(x) ={1 for & =a; and » = g;,
0 for w¢<a, .
Notice that

vi(®y )+ (@)

2 for xe(—o0, c0),

(8) vi(z) =
and that

(9) var yi(z) <4 for j=1,...,n.

(— 00, 00)
Combining (7), (8) and (9) we obtain

(10) var N;(z) < 2n < oo,
("°°’°°)

and
Ny(w,)+Ny(x_)
2

(11) Ny(z) = for ®@e(—o0, co).

We remember that N, (y) = N,(y) for almost all y. Following step

by step the proof of Theorem 1 it is not hard to see that the function N,
in Theorem 1, can be replaced by N,. This and (11) give

oo b
(12) N3(@) = (0, 1) [ du[ [ cosulpn—a) ldp (0]
0 a

Equation (6) implies
b

[ cosulpt)—a)ldp(el = [ ,(y)eosuiy—a)dy

a

0 1 (o]
= fN;(y)cosu(y—m)dy = fN*(y)dsinu(y—m)

) .
— _;_i sinu(y—a)dNg(y),
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hence, by (10), for large u we get

b
2
(13) | [ cosu(p(t)—a)ldp(t)l| < _:_ = 0(u™").

However, (12) and (13) are the hypotheses of the Tauberian theorem
for integrals stated in §6.8 on p. 135 of [2]. Applying this theorem we
get the required result.
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