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1. An oriented connected surface M in the Euclidean three-space E* will
be called convex if its second fundamental form II is positive definite. On a
convex surface, II defines a Riemannian metric. Various questions arise in
connection with the second Riemannian metric in M (see, e.g., the references
in [1]). In particular, if M is closed (compact and without boundary) and
convex (an ovaloid in short) we give two global characterizations of the
sphere which generalize some results of [1], [2] and [S].

Let le,, e,) be any set of local frame fields around a point P and
iw!, w?} their dual one-forms. Let |w}, i, j = 1, 2, be the connection forms for
the unique Riemannian connection of the metric {, ), with respect to this
basis, and w} the connection forms for II with respect to the same basis. If

' I i _ ik
Ki=wj—w; and K= ) Kjwk
k=1,2

then

1
() Ky=H- @adH,X)+Q and K,=H V.K+P,

T 8K?

where K|, is the Gauss curvature of II, K is the usual Gauss curvature of I,
H = (ky +k)/2 is the mean curvature of the ovaloid, X is a vector field on M
given by
X = Z K:nm €
im=1,2

and P and Q are certain nonnegative functions (see [4], p. 240, and [5]). If
P, is a critical point of H or K, (1) yield

Ku(Po) _ |
H(P) =

2. First we prove a theorem which generalizes Theorem 2.1 of [1].
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THEOREM 2.1. Let M be an ovaloid in E3. If there exists a real function
f(x, v) which satisfies the following conditions:

(a) f(x.y) is increasing in y.

(b) the function G(x, y) =f(x, y)/'y (y > 0) is decreasing in y,

(c) the function h(x) = G(x, x?) is monotonic,
and if K,, =f(H, K) identically on M, then M is a sphere.

Proof. Assume h to be increasing. We take P, such that

H(P,) = min H(P).

PeM

Since H? > K, we get for any Pe M
K, (P) =f(H(P), K (P))

VK(P) VK(P)
= h(H(P)) > h(H(Po)) = G(H(Po), H?(P,))

_S(H(Po), H*(Py)) _ f(H(Po), K (Po) _ Ku(Po) _
H(P,) g H(P,) H(P,) ~

= G(H(P), K(P)) > G(H(P), H*(P))

1.

Then K, = \/7(‘ for any point of M, and so M is a sphere [3]. If h is
decreasing, we take P, such that

H(P,) = max H(P).
PcM

As an easy consequence of Theorem 2.1 we obtain
COROLLARY 2.1. Let M be an ovaloid in E*. If

K" = Z Cl'HSiK’i,
i=1
where ¢;, s;, r; are constants and ¢; >0, 0<r; <3} and 5;4+2r,—1 >0 (or < 0)
for any i=1,2,...,n, then M is a sphere.
Proof. The function

flx,p)=Y ¢x'y"
i=1

with ¢;, s;, r; as above satisfies the conditions of Theorem 2.1, and so M is a
sphere.

Remark. In particular, for i = 1, Corollary 2.1 is exactly Theorem 2.1
of [1].

The following theorem generalizes Theorems 1 and 1’ of [S].

THEOREM 2.2. Let M be an ovaloid in E3. If there exists a real function
f(x, y) which satisfies the following conditions:

(a) f(x, y) is increasing in Xx,
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(b) the function F(x,yv)=f (x, v)/x (x # 0) is decreasing in Xx,

(c) the function g(y) = F(\ y, y) (y > 0) is monotonic,
and if K, =f(H, K) identically on M, then M is a sphere.

Proof. Assume g to be increasing. We take P, such that
K(Py) = min K (P).

PeM
For any Pe M we have

Ku(P) _f(H(P), K(P) >f(\'K(P), K (P))
VK (P) JKP ~ JKP

=F(\'K(P), K(P) =g(K(P) = g(K(Py) =F(\"K(Po), K (Py)
S(H(Po), K(Py) _ Ku(Po) _

H(P,) H(P)) ~
and so M is a sphere. If g is decreasing, we take P, such that

K(Py) = max K (P).
PM
Remark. Theorems 1 and 1’ of [5] are special cases of Theorem 2.2.
For example (Theorem 1), if we assume that f(x, y) is increasing in x,
decreasing in y and F(x, y) is decreasing in x, we must prove that g(y) is
monotonic. In fact, if y; <y,, then

g(yl) _— F(\/:V_l, yl) =f(\ Y15 yl) >f(\ Ya, y,)

> F(H(Po), K (Po)) = L,

n N
(V92
>f—h!%—i’) = F(\/y2, 92) =g ().

\‘.Vz
Also from Theorem 2.2 we obtain
COROLLARY 2.2. Let M be an ovaloid in E3. If

K“ = Z C,-HJ"K"',

i=1
where c;, s;, r; are constants and ¢; > 0,0<s; <1 and 5;+2r,—1 20 (or <0)
for any i=1,2,...,n, then M is a sphere.

Proof. The function
S, =Y axty’,
i=1
with ¢;, s;, r; as above, satisfies the conditions of Theorem 2.2, and so M is a

sphere.

Remark. In particular, for i = 1, Corollary 2.2 is exactly the Theorem
of [2].
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