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1. Introduction. In this note * we shall consider the extensions of
a fixed partial algebra (4, f) = (4, (f)iq) of arbitrary type 4 = (K;);;-
Our main result will give a characterization of the extensions of (4, f)
in terms of congruence relations in the universal completion (fi, f ) of
(4, f). Some of the results can be interpreted directly as generalizations
of Theorems 8 and 9 in [1] which deal only with special completions of
a partial algebra. We will use the terminology and some of the statements
of [3] and [2]. The unique closed homomorphic extension of the identity
map id,: (4, f) > (B, g) to an initial segment of A will be denoted by
@g; its domain will be denoted by dom (B, g) or dom B and the congruence
relation induced by ¢z in its domain by ker(B, g) or ker B.

2. Characterizations of extensions. A partial algebra (B, g) of type
A4 is called an extension of algebra (A4, f) if A < B, if A generates B, i. e.
CszA = B, and if f; = g;n(4%ix A), for all i¢ I, or simply f < gll4d. We
will consider the following special extensions (B, g) of (4, f):

(1) (B, g) is a completion of (A, f) if (B, g) is a complete algebra, i. e.
g;: B¥i > Bforalliel.

(2) (B,9)
(3) (B, g)is a strong extension of (A, f) if f = gllA.

(4) (B, g) is an initial extension of (4, f) if, for all ic I and b : K, - B,
g:;(b)e A implies b: K, - A.

is an inner extension of (4, f)if B = 4.

Indeed, the defining condition of (4) just states that (4, f) is an initial

segment of its extension and (3) says that (4, f) is a relative algebra of its
extension. Since conditions (3) and (4) insure that the additional values

* The rescarch was conducted while the author was visiting at the Technische
Hochschule Darmstadt, GFR, during the Summer Semester 1972.
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of the extending operations g¢;, i€ I, a]wa:ys are outside of (4, f), we shall
call such an extension an exterior extension of (4, f); they were called
normal extensions in [1]. It should be noted that the universal completion
(fi, f ) of (4, f) is an exterior extension, and that (3) and (4), in fact, form
one axiom of an inner characterization of (A, f) (cf. [3]). Only exterior
completions were considered in [1].

Some immediate consequences of the definitions above for an extension

g) of (4, f) are the following:

5) ker(B,g)n(Ax A) =1d,.

(B

(

(6) 1If (B, g) is a completion, then ker( A f c ker (B, g).
(7)

If (B, g) is an inner extension, then A is a complete system of
representatives for ker (B, g).

THEOREM 1. An extension (B, g) of (A, f) is strong iff
(8) ker(B, g)n(A x D(4)) = id,
where, for any subset X < fi,
D(X) = XU{f,(®) | ®: K;—~ X, icI}.
Since the identity map id,: (4, f) — (B, g) is injective and strong
if (B, g) is a strong extension, this theorem is a restatement of the Corollary
to Theorem 1 in [2].

THEOREM 2. For an extension (B, q) of (A, f), the following statements
are equivalent:

(4) (B, g) is an initial extension.

(9) For every y =f(y)e dom(B, g), zf the class of y modulo ker (B, g)
intersects A, then the class of y(k) modulo ker (B, g) intersects A,

for all ke K;.
(10) ¢z'(4) is an initial segment of A.
Proof. (4) = (9). Let y = f,(y)e dom(B, g) and ze A such that

r =@q(x) =@py) = ‘PB(fi(y)) = 9:(pp0Y).

Then there is an a@: K, > A such that gzoy = @ since (B, g) is an
initial extension, i. e. the class of y(k), ke K;, modulo ker(B, g) inter-
sects A.

(9) = (10). Let y =j‘,-(y)e<p§1(A) c dom(B, g). Then there is an
xe A such that z = ¢z (y). By hypothesis, there exists a sequencea: K; > A
such that @ = @zoy, i.e. y is a sequence in pz'(4). Therefore, p5'(4)
is an initial segment.
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(10) = (4). Suppose that a = g,(b)e A for some sequence b: K, - B.
Choose y: Ki-—>dom(B g) such that b =¢poy. Then a = ¢;(b) =
= 9ilpsoy) = 5(fi(y)), ie. fi(y)< o' (4). By our assumption, y: K,
— @gp'(4) and, therefore, b = pzoy: K, > A, proving that (B, g) is an
initial extension.

Using the characterizations of the preceding theorems we obtain
a simple description for exterior extensions.

THEOREM 3. (B, g) is an exterior extension of (A, f) iff
(11) ker(B, g)n (A x dom(B, g)) = id.

Proof. We prove the first part by algebraic induction. Let (B, g)
be an exterior extension. Obviously, the inclusion “>” is trivial. So
let («, y)e ker(B, g) with e A and ye dom(B, g). If ye A, then z =y
by (5). Assume now, for y =f;(y)e dom(B, g) and y: K; - dom(B, g),
that y(k) satisfies the assertion for all ke K;; i. e. whenever

(a(k), y(k))e ker (B, g)N (A x dom(B, g)) for some a(k), ke K,

then a(k) = y(k).

By our choice of y, the class of y modulo ker(B, g) intersects A.
Therefore, from Theorem 2, we obtain a sequence ®: K; > A such that
X =g@goy and, by mductmn hypothesis, we conclude = y. Finally,
(a:,f, )) = (#, y) e ker(B, g)n (4 x D(A)), so that, by Theorem 1, z = y.

Conversely, assume that equality (11) holds and that a = gi(b)e A
for some b: Ki—>B Choose a sequence y: K; — dom(B, g) such that
b = ggoy; then (a,ft )) belongs to ker(B, g)N (A x dom(B, g)) = id,.
Since (f.{,}') iIs an exterior extension, a = f, ) implies y: K, —> A and
a = f;(y) and, therefore, b = y and g¢,(b) =fi(y)

As a special case of Theorem 3, we get the following result of [1]:

COROLLARY. Let (B, g) be a completion of (A, [f). Then (B, g) is an

exterior completion iff ker(B, g)N(4 X AA) =id,.

3. The semilattice of extensions. The previous theorem shows that
the exterior extensions of a partial algebra are the “nice” extensions.
In fact, Theorem 3 states that the congruence relation ker(B, g) splits
into the disjoint union of the congruence id, in 4 and some congruence
in dom (B, g)— A. Arbitrary intersections and joins of such congruence
relations are of the same type go that the congruences ker (B, g) of exterior
extensions (B, g) form a complete lattice with smallest element id,

corresponding to (4, f), and largest element 1dAU{ A A)><(A A)},
corresponding to “the” one-point completion ( A f which is defined by
A = AU{oo} and, for ic I, f;|l4 = f; and f;(a) = oo if @ ¢ dom f;.



196 H. HOFT

The situation becomes much more complex when one passes to
arbitrary extensions, i. e. those that may or may not satisfy (3) or (4).
An extension (completion) may be an alternating iteration of extensions
of type (2) and of type (3) or (4) as the following example shows.

Consider an algebra (4,,f,) = ({1,2},¢) with an empty binary
operation.

Define extensions (4,, f,) of (4,, f,) recursively by putting

An+1 = Anu{2”’+17 2n + 2}, fn+1”An = f)
(+) fn+l(":7j) = min {z, j} + 2 if 2n—1<14,j < 2n,

(++) fn+1 7'7)) = min{i’j}
if either ¢ < 2n or j < 2n (but not both), and (¢, j)¢ dom f,.

The table of values of f, , then has the following form:

:fz |fn+1
fat1|1 2 3 415 ... 2041 2042
113 31 101 ... 1 1 0
234 2 212 ....... 2 2
301 2(55 35 ....... 3 3
411 215 6 4 4 4 |
51 2 3 4 5 5 |
. . . . . . |
oLl : N
. : - |
: . : |
M : |
: Do : '
24111 2 3 4 5 ....... r271$3'"27;15
2n+2({ 1 2 3 4. 5. .......] | 22043 2nt4

It is easily seen that
dom f, = (4, x 4,)—({2n—1, 2n} x {2n—1, 2n}).

Therefore, each (A,, f,), ne N, is a proper extension of (4,_,, f._1),
where f, is not defined on four-tuples. Also, these extensions form a chain
the union of which is a completion of algebra (A,, f,). Finally, at each
stage n, the extension (4,.,,f)) of (4,,f,) — where only the ( +)-part
of the definition of f,,, is used — is an exterior extension of (4,, f,),
whereas (4,1, f..1) 18 an inner extension of (4,,,,f\")) such that 4,
cim .f n+1*

This example shows that it is impossible to characterize an arbitrary
extension by a split of its corresponding congruence into a “lower” part —
for inner extension — and an “upper” part — for extensions of type
(3) and/or (4). In general, these two parts may alternate infinitely often;
in pa,rtlcula,r, none of the two parts can be characterized by an initial
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segment of A. Despite this freedom in choosing the extension as exempli-
fied above, it is possible to characterize the congruence relations ker (B, g)
of arbitrary extensions (B, g).

THEOREM 4. Suppose we are given a pair (R, Q) with the following
properties:

(E1) R is a closed congruence relation in an initial segment dom R of
A with id, c R.

(E2) @ is a union of equivalence classes of R.

(E3) A is a complete system of representatives for the congruence
EN(Q xQ) =: Ry.

(B4) Rn(Q x D(Q)) = RN (@ X Q).

Then (B, g):= (domR, flldomR)/R is an extension of (A,f) and

(A7 g”A) = (Q7 f“Q)/RQ

Proof. Consider the following diagram:

194 @, f19) — ¢, (dom B, fldom R)

q

(4, f)
| b

L-—--—>(@/Rq. 9
J1

@, flQ)/Rq 5> (B 9)

where p is the natural projection, ¢ — its restriction to @, and j, and j,
the induced homomorphisms. Note that the existence and injectivity
of j, follows from (E2) and (E3). Since ¢ is the restriction of p and since
the image of p o id, generates B, we may apply the Homomorphism Theo-
rem ([3], Theorem 7) to the right cell of the diagram. Therefore, j, exists
and is an injective homomorphism, so that the whole diagram commutes.
The set A generates dom E; hence A generates B, i. e. (B, g) is an extension
of (A4, f). Property (E3) implies, in particular, that j, is a bijective homo-
morphism, i. e. that (@/R,, f) is an inner extension of (A4, f). In order
to show that it is a relative algebra of (B, g) let us identify its underlying
set with the set A. Assume that a: K; > A such that a = g,(a)e A.
Then there is an x: K; — @ such that @ = qo x. Choose x¢Q with ¢(z) = a.
Then (z, f;(x))e RN(Q x D(Q)) implies by (E4) that f(x)eQ, and we
obtain ¢/ f;-(:n)) — f(gox) = f(a). Therefore, f© is the relative structure
of (B, g)on A.
The following theorem establishes a converse to Theorem 4:

TirEoREM 5. Let (B, g) be an extension of (A, f). Then the pair

(ker (B, g), p5' (4, gllA)) satisfies the four axioms (E1)-(E4).

Proof. By definition of the pair (ker(B, g), p5'(4)), conditions
(E1)-(E3) are fulfilled. In order to verify (E4), let (z, y)e ker(B, g) such
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that zepz'(4) and y =f'i(y) with y: K; - ¢5'(4). Then we get gg(x)
= ¢p(¥) = ¢5(fi(y)) = gi(pzoy)e A which implies f;(y)eg¢z'(4). This
shows the non-trivial inclusion of the identity (E4).

Define now E(4) : = {(R, Q) | B and @ satisfy (E1)-(E4)} and define
a partial order on this set by (R, Q) > (R’,Q’) if and only if R > R’ and
@ o Q. To this partial order corresponds the (dual) quasi-order on the
class of all extensions of (4, f) defined by (B, g) > (B’, g’) if and only if there
exists a unique homomorphism ¢z : (B, g) — (B’, g')such that pgp|4 =1d 4.
This homomorphism ¢z need not be a surjective map; but its image
generates B’ since (B’, g’) is generated by (4, f). The equivalence relation
~ associated with this quasi-order >, i.e. (B,g) ~ (B, g’) iff (B, g) >
(B, g’) > (B, g), determines precisely the isomorphism classes of extensions
of (4, f). From our characterization of extensions by pairs (R, @) satisfying
(E1)-(E4) we get

THEOREM 6. The partially ordered set (E(A), >) “is” the (dual) partial
ordering of the isomorphism classes of all extensions of algebra (A, f).

THEOREM 7. (E(A), o) is an infimum-semilattice with smallest element
(id 4, A) such that the meet of every non-empty subset exists.

Proof. Let (R;,®,), te T, be a non-empty family of elements of
E(A). Define R:= N{R,|teT} and @ := |J{R(a)|ae A}, where E(a)
denotes the equivalence class of ae A modulo R. First we verify that
the pair (R, @) belongs to E(A). The axioms (El1l) to (E3) are satisfied
by definition. For (E4), let (z, y)e RN(Q x dom R). Since (E3) holds for
(R, @), there is an element ae¢ A such that (a, #)e R. Therefore, (a, y)e B
and we obtain ye R(a) < @. In fact, we have shown more than the non-
trivial inclusion of (E4), i.e. RN(Q x D(Q)) =« RN (Q x domR) =« RN(Q x Q).
From the definition of the pair (R, ) it follows immediately that
(R, Q) is a lower bound for the given family (R,, @,), te T. In order to

see that it is the greatest lower bound consider the following diagram:
id
(B, g) —2-—>(X, k)
| v
. le 7
| WA
— (B, g) o (B¢, gt)

»

id 4
where (By, g,), te T, are extensions of (4, f) corresponding to the given
family (R,, @,), te T, and where (X, k) is the cartesian product of (B, g;),
te T, with its natural projections p,. With our construction of (R, @) we
may realize (R, Q) as a subalgebra (B, g) of (X, k) such that (4, f) is
identified via the embedding j with the diagonal of (X, k); idgoj is the
lifting of the family id,: (4, f) - (B, g;). Let (B’, g’') be an extension
of (4, f) corresponding to a lower bound (R’,Q’) of the family (R,, @,),
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teT, in E(A); i.e. (B’,g’) is an upper bound for (B,, g,), te T, in the
quasi-order [>. Finally, the homomorphisms ¢, satisfy the equalities
¢lA = id, for all te T. If ¢ is the induced homomorphism into the product
(X, k), thenpoid,, = idgoj and ¢ maps, therefore, A onto the diagonal
of X. Since (B, g) is generated by (A4, f), the image of ¢ is contained in
(B, g), so that (B’,g’) >(B,g), ie. (R,Q')<(R,Q). Hence (E,Q) is
the greatest lower bound of the family (R,, Q,), te T.

As the proof of Theorem 7 shows, the meet in the semilattice (E(4), o)
1s the set-theoretical intersection only for the first component of its ele-
ments, but not for the second component, in general. Using the notations
of the proof, the following inclusion is used implicitly in the proof:

(12) Q = U{R(a) | ac 4} = U{N{By(a) | te T} | ac 4}
< MU{B(a) | ac A} | te T} = N{Q, | te T}.

Equality in (12) is forced trivially if, for any s,te 7, R,N(Q, X Q,)
= R;N(Q; X @,). Interpreting this identity for the corresponding extensions,
we have (4, g,llA) = (4, g,l4) since @, together with R,||Q,, te T, de-
scribes just the inner extension of (4, f) which is contained in extension
(Bt ’ gt)-

CoroLLARY 1. E(4; R, Q) := {(R, Q) | R1Q" = R|IQ} = E(A) isa sub-
semilattice of E(A) for each (R,Q)e E(A). The infimum in E(A; R, Q)
18 the set-theoretical intersection.

It should be noted that apart from above remarks still nothing can
be said beyond Corollary 1 if no conditions are put on . Denote by Q|
the initial segment generated by @, i. e. the smallest subset D of A contain-
ing @ such that for xzeD and x = fl-(w) also ®(k)e D for all ke K;. Then
for each (R, Q') in E(A; R, Q),Q =@ c domR and R’ is determined
on @, but not on @, — Q. The extensions on p. 196 and simple modi-
fications thereof provide examples. In the special case that @ itself is an
initial segment of fi, condition (E4) implies that R, is a closed congruence
relation in Q. Therefore, (R,, Q)¢ E(A) and it is, in fact, the smallest
element of E(A4; R, Q).

Another special subsemilattice of E(A) is described in

COROLLARY 2. V(4):= {(R,Q) | domR= }1} c E(A) is a subsemi-
lattice of E(A) with smallest element (id ; , A), corresponding to the universal
completion (fi,j") of (4, f).

It is obvious that neither E(A) nor its subsemilattices described
in the corollaries have a greatest element, in general. The semilattice
V(A) contains some of the maximal elements in E(A) since domR = A
is & necessary condition for a maximal (R, ). Naturally, if for such a pair

(R, Q) also @ = fiv, then (R, @) is a maximal element of E(A4).
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THEOREM 8. E(A) has a greatest element if and only if |A| =1 or
(A, f) is a complete algebra.

Proof. = . If E(A) has a greatest element (R, @), let (B, g) be
the corresponding extension of (4, f). Then (B, g) is a completion of
(4, f) and a homomorphic image of every completion of (4, f), in particular
of every inner completion. Therefore, B = A and g is the only complete
structure on set A extending f, so that for |4| > 1, f is already a complete
structure.

<. If |A|] =1, then (4, f) admits only one inner completion which
is a homomorphic image of every completion of (4, f). If (A4, f) is a complete
algebra, then E(4) = {(4, f)}.

4. An open problem. In the previous section we described some of
the more elementary properties of the set E(A) of extensions of algebra
(4, f). These investigations originated with the problem that we want
to state in this section. Let & : = HSP (A, f), 1. e. the variety generated
by algebra (4, f), and let &/, be the subvariety of all complete algebras
in &. Obviously, &, is a non-trivial class whenever |A| > 1. On the
other hand, put ¥ := {(4, g)|(4, g) inner completion of (4, f)} and let
¥ 4 = HSP(7"), the variety generated by ¥ .

ProBLEM. Characterize those algebras (A, f) for which &) = 7", is
true. (P 896)

It is always true that ¥, < o/, since every inner completion of
(4, f) is a homomorphic image of (4, f). The converse is false, in general,
as the following example shows.

Consider algebras with a unary operation and put

o = HSP(4, f) = HSP({0, 1}, ).

Then there are four inner completions of (4, f). Since & is closed
under S and P, the set of natural numbers N is a subalgebra (i. e. subset)
of some power of (A4, f). Therefore, (N,’) with the successor operation as
algebraic structure belongs to ;. Suppose now (N, )¢ ¥",. Then there
is a surjective homomorphism p: (B, g) — (N, ') where (B, g) 1s a sub-
algebra of some product (X, k) of the four inner completions of (4, f).
Choose bye B such that p(b,) = 0¢ N. Since (N, ’) is a Peano-algebra,
there is a homomorphism j: (N, ') - (B, g) such that j(0) = b,. There-
fore, p 0 j = idy, i. e. j is injective and we may consider (N, ') to be embed-
ded into (X, k) as a subalgebra. Let 0¢ N be represented by the sequence
(@) X with a;e {0, 1}, and let 2 = k(k(0)). Then 4 = k*(2) = 2 since
of the four complete operations on A three act like the identity on 2 and
since the fourth has period two. This clearly is a contradiction, so that

(N, )¢ 7 4.



EXTENSIONS OF A PARTIAL ALGEBRA 201

It is easy to see that |[A| = 1 or (4, f) a complete algebra are sufficient
to force o/, = ¥",. Unfortunately, they are not necessary for the equality
as they are in Theorem 8. Again, consider algebras with one unary oper-
ation. This time, take A = N and, for some ne N, let f be the successor
operation defined up to this number n. Then (N, ') itself is an inner
extension of (4, f), and since for our special type, the free algebra over
a set M is given by the disjoint union of M copies of (N, '), we obtain
the equality &/, = ¥ 4.

A solution of the Problem might be possible if one can find an internal
characterization of the infimum in E(A) of all inner completions of

(4, f).
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