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ON CONVEX HYPERSURFACES IN E"*!

BY

THOMAS HASANIS (I0OANNINA)

1. Introduction. A convex hypersurface M in E"*! with positive. principal
curvatures has a positive definite second fundamental form if it is appro-
priately oriented. Also its third fundamental form III is a positive definite
metric on M with Gaussian curvature equal to 1. We denote by I
= g;jdx' dx), 11 = b;;dx'dx’, and III = e;;dx'dx’ the first, second, and third
fundamental forms of M, respectively, and write g = det (g;)), b = det (b;)),
and e = det (¢;). It is well known that
(1.1) M, == [°

g g
If we denote by I'fj, ITf;, and Af; the Christoffel symbols with respect to I, 11,
and III, then using a well-known result (cf. [2], p. 33) we conclude that in
every case the functions '

(1.2) T% = I — 11,
(14 St = A4 I

are components of tensors on M. In a similar way ([3], p. 22-23) we can
prove the relations

(1.5) T,’}‘ = —%b"‘,V,b,-j,
(1-6) ‘._'i‘ = “%b'k lllVr bij9

where b” is the inverse matrix of b; and ,V,, ,,V, are the symbols of
covariant differentiation with respect to I and III, respectively.

It is well known (cf. [1], p. 67) that the /-th mean curvature M, of a
hypersurface M is defined by

n
(I)M,=Zklk2...k,,
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where k; (i=1, 2, ..., n) are the principal curvatures of M. It is also well
known that on a convex hypersurface we have M, M,_, > M, with equality
in the case of the hypersphere.

In the sequel we assume that all the hypersurfaces have positive prin-
cipal curvatures.

2. Main results. First we prove the following

Lemma 21. Let I =g;dx'dx’ and W =§;dx'dx’ be two arbitrary
Riemannian metrics on a hypersurface M (not necessarily closed) in E"*!. Let
[} and \\T'}; be the Christoffel symbols with respect to 1 and 11, respectively,
and ,V, the covariant differentiation with respect to Il. If for raising and
lowering the indices we use the tensor §;, then

(2.1 g Aj’i"uVj AY = R,—g" \R,+ A" A};— P,

where A} = I's—,IY, R, is the scalar curvature of 11, P, = A4 A} is a

function on M, \R,, is the Ricci tensor of 1, and §" is the inverse matrix of g;,.
Proof. A direct computation gives ([2], p. 33)

nb A:‘j"an Al = vaﬂ-nR?ﬂ*'A:j A — Ay A?j,
where RY, and R, are the components of curvature tensors of I and II,
respectively. Contracting once and transvecting with g'! we obtain (2.1).

Now, we can prove the following “theorems.

THEOREM 2.1. Let M be a convex hypersurface (not necessarily closed) in
E"*'. If A, is the Laplace operator with respect to 1, and S is the square of the
length of 11, then _

n

(2.2 4, log M, —div, 4 = n? Mf—nS+M

VII(Mla Mn)_PI’

where V, denotes the first Beltrami operator with respect to the second
Jundamental form 11 of M, M, (I =1, 2, ...,n) is the l-th mean curvarure of M,
A is a vector field with components

-~

A= nb"'——("Ml
- b
cx”

and P, is a nonnegative function on M.
Proof. Applying Lemma 2.1 in the case of the first and third funda-
mental forms of a convex hypersurface M in E"*! we get

(2.3) 7187 =V;S¢ = Ri—¢" \wRy+S" S} — Py,

where R, is the scalar curvature of I, and ,,R;, is the Ricci tensor of III. But
mRiy =(n—1)e,, and thus ¢" R, =(n—1)g'e; =(n—1)S since g''e; =S.
Also R, = n>M?%—S (cf. [1], p. 55). Moreover,

ClogM, 1 cM,

S.=Al. T = = s
” iyt x! M, X/




and thus
¢ log M,

cx™

S7=g"Shj=yg"

Using (1.2)-(1.7) we get S5; = —2T} and, consequently,

Sit = g Sty = ¢"(=2Ty) = g™ b"\V, by
by (1.5), or

S}' = h"|V, (q,nn bmj) = nb" ((.1.\:,1

since ¢'"b,; = nM,.
Finally, we have

R - M. ¢ .
‘M, 1 ‘Mn= n phr 1 (M, or Shsi =£—V||(M1’M")'

hQi — phhr _
SU Sy =0 o ML o M,

Setting A’ as in the theorem and substituting the above relations in (2.3) we
get

3 . 1
,V,(g'"'—(.T")—,V,}J = n? Mf—nS+A’4

rIII(A'!I’ Mn)—Pl

or

ylm'pm |og M"_div'i = n? M%—"S-'-A"I_, Vn(Mp M,)—P,

or (2.2). This completes the proof of Theorem 2.1.

THrOREM 2.2. Let M be a convex hypersurface (not necessarily closed) in
E"*1 If A,, is the Laplace operator with respect to Ill, then

(2.4)

. (M.~ M, M, |
— Ay logM,—n le"ly:n( MM, ) n (»I

M -ﬁ l7|| —1\,/'11, Mn)—Pnla

where p is a vector field with components

‘Q(Mn— l/Mn)

i — hl‘r
# cx

and P,, is a nonnegative function on M.

Proof. Applying Lemma 2.1 in the case of the third and first funda-
mental forms of M we obtain

(2.5) mV; P =V S} = Ry, —¢€'\Ry+S;" Sti— P,
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where R, is the scalar curvature of III, and €” is the inverse matrix of e;;.
But R,, = n(n—1) and ,R;, = nM, b;,—e;,. Moreover,

. Clog M 1 M . Clog M
j == " = n b_elmgl —om__= "
Si cxt M, ix'’ S/ =e"Sm=e oxm

Also, using (1.2)-(1.7) we get S = 2T}, and thus
Sfl = e/ Sv'nj = 2ei'n(_,}blrm|7r bmj)

by (1.5), or
. . ‘(M,_y/M,)
il = —p¥r P, (e™b, ) = —nbr ——L "
Sj b* V¥, (¢ mj) nb o
since &b, =nM,_,/M,.
Finally, we have
hQj — _ ;.,-(‘\‘(Mn—l/Mn)_l_(ﬂMn___ ___n_ ',‘-(Mn—l/Mn)(q‘Mn
R ™ v e v N
or
n M,_
S:"S‘li. = —M,, V"(_A'l-,,—l’ Mn)'

Setting s as in the theorem and substituting the above relations in (2.5)
we get

. ¢ log M,
,,,[’](—n;t')—mV,(e'"'—%)
n(M,—M;M,_,) n M,
- (S M) =P

or (24).
Now, we are ready to prove the main result of this paper.
THFOREM 2.3. Let M be an ovaloid in E**!. Then

Vy(My, M,) M,_
f—"T;“———dM >0 and J v, (T‘ M,,)dM <0.
M

M
The equality in either case holds iff M is a hypersphere.

Proof. Using the divergence theorem of Stokes we infer from (2.2) that

(2:6) -J‘(nS—n2 Mi+P)dM =n j YulM,, M) (AX}’ M) im.
M n

M

But R, = n? M#—S ([1], p. 55). It is also obvious that R, = n(n—1)M,.
Since MI>M,, we get n?M?—S=R,=n(n—1)M, <n(n-1)M} or
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S >nM?, and thus nS—n®>M?+P, > 0. From this relation and (2.5) we
obtain

V,(My, M,)
2.7 1 1 n > 0.
2.7 .[——_M. dM >0
M

In (2.7) the equality holds iff M is a hypersphere. In fact, if M is a
hypersphere, then V,,(M,, M,) =0, and thus

J‘VII(MI) Mn)

dM =0.
M,

M
Conversely, if the last equality holds, then by (2.6) we obtain nS —n?M?+ P,
= 0, since the function nS—n? M?+ P, is nonnegative, or S = nM?Z. Then -
M, = M} or M is a hypersphere.
Moreover, from (2.5) by the Stokes theorem we get

2 —
j(” (M, A;;' 1~ M) +P|u)de = —n fV"(M; /M) dMy,,

M M

where dM,, is the volume element of the third fundamental form. But
dM,, = M, dM, and thus

(2.8) f(”z(Mn M, ,—M)+P;M,)dM = —"J‘Vu(
A ,

M, i
T M,,)dM.

Since M\ M,_,—M, >0, we have

M
gt >
J‘ 1 ( M" b M") dM 0

M
with equality in the case of the hypersphere. In fact, if M is a hypersphere,

then
M,_ M,_
V“( M..l , M,,) =0 and J Vi (-—M—‘ M,,)dM =0.

M

Conversely, if the latter equality holds, then from (2.8) we conclude that
nM;M,_,—M)+M,P,,=0 or M;M,_,—M,=0. The last equation
proves that M is a hypersphere. This completes the proof of the theorem.

As an easy consequence of Theorem 2.3 we obtain

COROLLARY 2.1. Let M be an ovaloid in E"*!. If one of the functions M,
M,, and M,_,/M, is constant, then M is a hypersphere.

Remark. Obviously, Theorem 2.3 gives a characterization of the hy-
persphere and is some generalization of known characterizations of the
hypersphere which were given by some authors.
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An immediate result of Theorem 2.3 is the following

COROLLARY 2.2. Let M be an ovaloid in E"*'. If there exists a function
®: Rx R — R which is increasing (decreasing) in one variable and strictly
decreasing (strictly increasing) in the other variable and if

M,_
¢( =L (p, M,,(p))=0 for all peM,

then M is a hypersphere.

Proof. If x; (i=1, 2, ..., n) are the line curvature coordinates, then the
second fundamental form II of M takes the form

II = Z L,'((I.Y")z
i=1

(L; are positive since the principal curvatures are positive by assumption),
and thus

M,_ ~ 1 (M, _
(29) V(—M——‘~ M")= ) f( v ) (M),

i=1i

But from the equality &#(M,_,/M,, M,) =0 we get

M,_
(2.10) Py, _, M(_M__*) +®y (M,), =0
or | K
Py, _ M, (M
M = - n—1'n n—1
( ll)xl ¢M" ( M" )x'

if we assume that @ is strictly increasing or decreasing in the second variable
(so @y, # 0). Then from (2.9) and (2.10) we obtain

1“,,_1 M,_ 1M, z l 2
V — M - —_— - Z — (M .
n ( M " ’ " ) (DM” i=1 L,' (( n)x,-)

Since Py, _, u,Pu, <0 by assumptions, we have

(2.11) v, (-MTJ1 M,,) >0 or jv,,(%i, M,,)dM > 0.

M
Using Theorem 2.2 and (2.11) we conclude that M is a hypersphere.
In a similar way we obtain the following corollary which was proved in
[4] by a complicated method.

CoROLLARY 2.3. Let M be an ovaloid in E"*'. If there exists a function
®: R xR — R which is increasing or decreasing in both variables and strictly
monotonic in ar least one of its variables and if ®(M, (p), M, (p)) =0 for all
peM, then M is a hypersphere.
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