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ON SOME RANDOM CONVEX SETS

BY

R. JAJTE (LODZ)

1. For a sequence {zk}. of complex numbers we denote by V, the
smallest closed convex set containing all elements of the sequence

[oo]
{2y 241y --.3. The set (V,, which we denote by core z,, is called the
k=1 k

core of the sequence {z;} (cf. [2], p. 55). In analogy to the theory of linear
prediction core z;, may be treated as the “convex remote future of the
k

sequence {z;}”.
Let &,, &,, ... be a sequence of random variables with complex values
over a probability space (2, Z, P). If for every we 2 we put
(1) V(w) = coreé,(w),
then we obtain a family of convex sets associated with the process {£,}.
For example, if (7} is a sequence of independent random variables uni-
formly distributed on the interval [0, 1], and &, = exp(iky,), then coreé,
= {|2| < 1} with the probability one. Y
Write (1) in a somewhat different form. Let Z denote the set of all
complex numbers. For ze¢Z and we 2 we put

o) i eV (o),
199 =10 it 24V ().

THEOREM 1. For every zeZ the function n(z, .) is L-measurable, i.e., (2)
describes a stochastic process (with “complex time 2”).

"Proof. For 0 < a< m we set
Vi(w) = {r real|re®cV (w)}.

Obviously, V, is a closed interval or empty set @. Clearly, it suffices
to show that for every z = re*® (r — real, 0 < a < =) there is

{wjreV (w)}eZ.
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Put
sup{z|lzeV,(0)} if V, #0,
Pa(0) = :
— o0 if Vv, =0,
and
inf{rjzeV,(w)} if V, # G,
Yo(w) = :
+ oo if V, =0.
Then

{olreV,(0)} = {oly.(0) <7 < g.(0)}

and it remains to prove measurability of functions ¢, and y,.
We shall show the measurability of ¢,. For that purpose let N, denote
the set of all random variables of the form

(o) = D' A& (o),

where m = 1,2, ..., 4, — rational, ,>0, Y1, =1, and k;>n. (N, is
a dense “rational” part of V). =1
For0<a<mn,n=1,2,..., k =1,2,... put

a

. _ 1
o = { = 7,0xp(ta,)|lue M,, r,—real,|a,—al < —}

k
and
M, . = N, {e}, where ¢(w) = — oo.
Measurability of ¢, follows from the equality
@o(w) = inf inf sup 7,(w),
n=1,2... k=1,2... ”‘M;,k
where

#(0) = 7,(w)exp (ia,)),

Tuw)— Teal and 0 < a,,) < =.
The proof of the measurability of y, is analogous.

2. The cores
V (w) = coreé, (w)
may exhaust all the closed convex subsets of the plane. We shall show

somewhat more. Let a probability space be the segment £ = [0, 1]
with the usual Lebesgue measure. We shall construct a sequence {&,}

(*) {§,} is convergent almost everywhere on £,

(**) for every closed convex subset V of the plane Z there exists a
number we2 such that coref,(w) = V.
k
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fo(w) = ™) (n =1,2,..., 0<w<])

be the orthogonal Steinhaus system ([3], p. 134), i.e., the functions #, are
defined in the following manner: if © = [0, 7, 7,, ...], is the infinite dyadic
expansion of the number we[0, 1], then

I (w) = [0, 717376 ... ]2y
(3)

Let {a,} be a sequence of positive numbers satisfying conditions

(4) (i) Zan = o0 and (i) D ai< co.
Put . i
(5) £ (0) = D filw).
k=1

THEOREM 2. A sequence of random variables {&,} defined by (5) possesses
both properties (*) and (**).
Proof. By (4) (ii) and a theorem of Steinhaus ([3], p. 137), the series

da,f,(w) converges almost everywhere on 2 = [0,1]. To show (**)
n=1

take a closed convex subset V of the plane Z.
By (4) there exists a sequence of “directions” {a;} (0 < a, < 1) such

that
k
V = core a, e*™%Y,
ro{ Yo,
Put
(6) 'ak=19k(w) fOI‘ k=1,2,...

The equalities (6) and (3) determine the number we[0, 1] such that
coreé,(w) =V,
k

which completes the proof.
It is not difficult to prove that the sequence (5) is divergent on a resi-
dual subset of the interval [0, 1].

3. A random convex set (1) (or stochastic process (2)) describes an
asymptotic behavior at infinity of the sequence of random variables
{&:}. Restrictions imposed on the stochastic process (2) are requirements
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concerning the sequence {&,}. In general theory of stochastic processes
one of the natural requirements imposed on the process is its continuity
(in probability or with probability one). We shall prove the following
THEOREM 3. Process (2) is continuous in probability at the point zeZ
if and only if ”
Prob{w|2eFrV(w)} =0,

where Fr A denotes the boundary of the set A. The process (2) is continuous
in probability if and only if it is conlinuous with probability one.

Proof. Let zeZ. Put 2, = {w|zeFrV(w)}. (The measurability of
the set 2, and of the set M, defined below may be proved analogously
as in the proof of theorem 1.)

If w¢ 2,, then either (a) 2¢V (w) or (b) zelnt V(w). Let 2, — 2. Then,
in the case (a) n(2, ) = 0 and %(z,, w) = 0 for n > ny(w). Similarly, in
the case (b), (2, w) =1 and %(z,, ®) =1 for n sufficiently large. If
Prob(£2,) = 0, then Prob (w|y(2,, w) = (2, w)) = 1, thus the process (2)
is continuous with probability one.

Now, let Prob(£2,) = y > 0. For the simplicity assume z = 0 and
for 0 < a< 2= put

R, = {ré“jr > 0},
M, ={we 2,|]V(w) N R, # O}.

We shall show that there exists an a such that Prob(M,) < y. For
if to the contrary, for almost every we 2, there would exist positive
numbers 7,(0) (k =1, 2,3, 4) such that r,(w)e*2eV(w) for k£ =1, 2,
3, 4, then it would follow by the convexity of V that 2 = 0eInt V, which
is impossible. Thus Prob(M,) < y for some a. For such an a we have

Prob{we 2,|(1/n)é ¢ V (@)} > y — Prob(M,) >0,
whence
Prob{w|in((1/n)€*, 0) —5(0, w)| > 1} > y — Prob(M,).

Thus the process (2) is not continuous in probability at the point
2z = 0, which ends the proof.

Let A stand for the Lebesgue measure on the plane Z. If the process (2)
is A-almost everywhere continuous in probability, then, considering if
necessary a process stochastically equivalent to the process (2), we may
assume that the process (2) is measurable (see [1] or [4]). Then the for-
mula

(o) = [ n(z, 0)A(de) = A(V(w)) for we 2
V(@) '
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defines a random variable {. The expected value E! may be treated as
the (two-dimensional) coefficient of divergence of the sequence {¢,}. 1f
for a random variable £ we put

) : ) 1 for &{(w) =2,
2 =
T © 0 for &(w) #2
(in the case when &, = &), then the process (7) is continuous every-
where except for at most denumerable set of values {z;} for which
Prob(w|é(w) = z;) > 0.

4. The problemaﬁics presented here may be easily extended to the
case of the processes {§,} with values in R" and with continuous time.
Let (&;,t > 0) be such a process. Put

Ve(w) = (eonv{{(2, w)|t > s},
820
where conv(A) denotes the smallest closed convex set containing set A.
V is called a core at infinity of the process £. For instance, the theorem 1
from section 1 may be formulated in this context as follows.
THEOREM 4. If a process (&,,1t > 0) is separable ([4], p. 504), then for

every zeZ the formula

1  of 2eVi(w),

nz(w) = .
0 if 2¢Vi(w)

defines a random variables.
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