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It has been known for some time that if X is a compact metric space, then
H(X), the set of all homeomorphisms from X onto itself, is a complete
separable metric topological group which acts on X (see [4]). In recent years,
a theorem due to E. G. Effros (see [9]) has come to the attention of topologists
and has proven to be a very valuable tool for working with spaces of
homeomorphisms and their actions on continua.

In order to use Effros’ theorem one needs to have certain “nice” properties
on both the subgroup G of H(X) involved and the orbit of X under the action
of G involved. Here, we obtain results about the action of H(X), or a subgroup
of H(X), on X, doing what we can without Effros’ theorem when it is not
applicable, and using it when it is applicable along with techniques developed
largely by Ungar [22], [23]. It should be noted here also that Gerald Ungar
was the first topologist to use and recognize the importance of Effros’ theorem.

The author would like to thank the referee for his thorough, careful job and
the shortening and improvement of several proofs and results which appear in
the paper.

1. Background, definitions, notation. We present here a brief discussion of
the ideas involved in this paper. For a more detailed discussion, the reader is
referred to [19].

If X is a compact metric space, H(X) will denote the set of all homeomor-
phisms from X onto itself. The topology on H(X) is the compact-open
topology. A metric which is compatible with this topology is the commonly
used sup metric. If d is a metric on X compatible with its topology, define g, the
sup metric on H(X), as follows: if f, ge H(X),

o(f, 9) = lub{d(f(x), g(x)) | x€ X}.
Also, if ¢ >0, xe X, fe H(X), let
D(x)={yeX |d(x,y)<e} and NJ(f)={geH(X)]|e(f,9)<g¢}.

Note that g, D (x), N (f) all depend on the given metric d on X. We will be
somewhat careless about our notation when no confusion arises. In particular,
when we speak of a compact metric space X, d will be the name of the metric
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we put on X, whether it is mentioned or not, and if ¢ > 0, x€ X, fe H(X), then
0, D,(x), N,(f) will have the meanings described here.

Note that, for X compact metric, subgroups of H(X) act also on X. The
action of the group G on X is transitive if for x, y in X there is some g in G such
that g(x) =y. If xeX, A < G, let

Ax = {g(x) | ge A}.

For each x in X, Gx is known as the orbit of x in X under the action of G. We
will use 1 to denote the identity in H(X). Also, G(x) = Gx.

In this paper, a continuum will be a compact, connected, metric space. We
will use N to denote the positive integers. If 4 is a collection of sets, 4* will
denote the union of the members of A.

If neN,

Fi(X) = {x = (x{, X5, ..., x)eX" | if i #j,i,je{l,..., n}, x; # x;}.

If G is a subgroup of H(X), we will take the action of G on F"(x) as follows: for
heG, x =(x,, ..., x,) € F"(X), define

h(x) = (h(x,), ..., h(x,)).
A space X is strongly n-homogeneous (n-homogeneous) if whenever

(X145 X505 cees Xp)s (V15 Y2s -+ o» Y € FU(X)
there is some h in H(X) such that
h(x)=y; for each i<n (h{x;,...,%X,} ={V1s---s Vu})-

Ungar [22] has shown that if X is an n-homogeneous continuum, then X is
strongly n-homogeneous or X is the circle.

A space X is said to be nearly n-homogeneous if whenever {x,, ...,x,} is an
n-element subset of X and {D,, ..., D,} is a collection of n open subsets of X,
there are an h in H(X) and an n-element subset {y,, ..., y,} of X such that

(1) y;eD; for each i < n;

(2) B{xy, oo X} = {Pys o0 Vb

(If n=1, the terms homogeneous and nearly homogeneous are used.)

The following is a version of the Effros theorem due to Ancel [1]:

Suppose that a separable complete metric topological group G acts
transitively on a metric space X. Then the following are equivalent:

(1) G acts micro-transitively on X;

(2) X has a complete metric;

(3) X is a second category in itself.

The action of G on X is micro-transitive on X if, for every x in X and every
neighborhood u of 1 in @, ux is a neighborhood of x in X. (Note: It is easy to
show that this is the same as saying that if u is open in G, ux is open in X.)

A map a to a space X from a simple closed curve S is essential if it is not
homotopic to a constant, and is inessential if it is homotopic to a constant.
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II. Somewhat without Effros.

Remarks. Suppose G is a complete subgroup of H(X), where X is
a compact metric space. Then Gx may not be complete, but Gx is a Borel
subset of X, at least (see [14]). Also, G is complete if and only if G is closed in
H(X).

THEOREM 1. Suppose X is a compact metric space, G is a subgroup of H(X),
x€X such that Gx is uncountable. Then, if ¢ >0, then (GnNe(l)z(x) is
uncountable.

Proof. Since G is second countable, some countable subcollection of
(h(N) " G) | heG}

covers G. List the elements of some such subcollection: h, A4, h,A, ... (where
A= N/ (1)nG). Since Gx is uncountable, there is i such that h,A(x) is
uncountable. But then h; !(hA(x)) = A(x) is also uncountable.

ExaMpPLE 2. There is an example of a compact metric space L such that

(1) L admits a countable dense orbit under the action of H(L);

(2) if x is in the countable dense orbit, there is &> 0 such that
Ns(l)(x) = {X}

The idea behind this example is quite simple: It is a simple closed curve
which has been “pinched” at a countable number of places. Describing the
example precisely and proving it has the properties claimed seems to be
a rather messy business, however. Thys, we will just describe the example, but
omit the proof that it has the properties claimed, since it is not difficult to
believe that this example has these properties, nor to construct other examples,
and the proof is long and technical.

Construction of the Example. Consider the unit interval [0, 1] and
let Q = {q,, q,, - ..} denote the rationals in (0, 1). Let g, = d, and let d denote
the first element of Q larger than d,. Now [0, 1]—{d,, d}} consists of exactly
3 mutually exclusive intervals cy,, ¢;,, ¢,3. Let d, denote the first element of
Q not d, or dj. Let C denote the element of {c,,, ¢, ¢;3} which contains d,,
and let d; denote the first element of Q larger than d, also in C. Continue this
process inductively: Suppose that for ne N, the pairs

{dy, a1}, {dy, &3}, .., {d,, 4,3}
have already been chosen so that, given any pair {d,, d;} from this collection,
d; < d;
and, given another pair {dj, dj} such that i <j, either

dj<d;,, d;<dj<dj<d;
or
di<d,;
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Then choose {d,+, d,+,} from Q as follows: Let d, ., denote the first element
of Q not in
Q_{dl’ 1s dza 25 oo d,,, d;,}

Now [0, 1]—{d,, d}, ..., d,, d,} consists of a finite set of mutually exclusive
intervals, of which d, ., is in exactly one. Call it C,, ;. Choose d,,, to be the
first element of Q in C,,, which is larger than d,,,. Let

E = {{d,, d} | ieN},
F={{x}|xe@©, )=E*}, F ={{x}|xe,1).

Now F'u{{0, 1}} gives a decomposition of [0, 1] into a family of closed
nonempty disjoint sets. This decomposition, endowed with the usual quotient
topology, is the simple closed curve S. Then EuFu {{0, 1}} is a decom-
position of S into a family of closed nonempty disjoint sets and this
decomposition endowed with the usual quotient topology is upper semi-
continuous. Thus the resulting space L is a compact metric space. Suppose
that P':[0,1]— S is the projection map, and likewise P: S — L is the
projection map. Note that if {d,, d;}, {d;, d;} € E; i < j, then the set {d;, di} does
not separate d; and d; in S.

Bellamy [5] has pointed out the following to the author and given his
permission for it to be included here:

THEOREM 3. Suppose that the separable complete metric topological group
G acts on the compact metric space X and that there is ye X such that Gy is
countable. If xe Gy, then there is some open set o in G such that 1eo and
o(x) = {x}.

Proof If G, = {ge G | g(y) = y}, then G, is a closed subgroup of G and
{hG, | he G} is a partition of G into a countable collection of closed
homeomorphic disjoint sets. Since G is complete, some hG, has interior in G,
and thus each hG, has interior. The theorem follows.

Suppose that X is a compact metric space, G is a subgroup of H(X), and o is
an open subset of G such that o = 07! (i.e,, heo iff A~ '€ 0) and 1€o0. Then G,
will denote

{ke G | there is a finite subset {k,, k,, ..., k,} of o
such that k = k,0k,_,0...0k,}.

Note that G, is a closed-open subgroup of G.

THEOREM 4. Suppose X is a compact metric space. For xe X and G a (com-
plete) subgroup of H(X), let

Cx = {ye X | for each open subset o of G

1

such that o =0"" and 1€o, yeG,x)}

Then if x,e X, C = {Cx | xe G(x,)} decomposes G(x,) into a collection of disjoint
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(Borel) sets, and if x, y are in G(x,), and if he G and h(x) =y, then
h(Cx) = Cy.

Further, if R, = {heG | h(x,)eCx,}, then R, is a closed subgroup of G.
Proof. Suppose that x, y are in G(x,) such that Cxn Cy # Q. Let

1

O={o open in G|o=0"" and 1€0}.

There is some z in CxNCy and if 0€O0, there are k, he G, such that
k(x) =z, h(y) = z. Then h™'k(x) = y and since h™'ke G, also, ye Cx. In fact,
Cy < Cx and Cx < Cy, so that Cx = Cy. '

If x,y are in G(x,), there is h in G such that h(x)=y. Then
h(Cx) = Ch(x) = Cy: Now yeCh(x)nh(Cx). Suppose weh(Cx). Then
w = h(w') for some w'eCx, and if 0€0, there is some I, in G, such that
[ (x) = w'. But then

hl,h~'(y) = w.
Since {hoh™' | 0€0} =0, weCy and h(Cx) < Cy.
Suppose ze Cy. For each o in O, there is [, in G, such that [ (y) = z. Then
h™'Lh(x)=h"'z) and h 'L heG,- 1o
Again, since {h™'oh | 0€ 0} = O, this means that h~}(z)e Cx and zeh(Cx).
Thus
Cych(Cx) and Cy=h(Cx)= C(h(x)).
Suppose xe G(x,). Now, if G is complete, then for each o in O, G, is
complete, and so G,(x) is Borel. Also,
Cx = () G,(x),

0e0

and if {o,, 0,, ...} is a subcollection of O which gives a neighborhood base for

1, then
N Gox) = () G, (x).

0e0 ieN

Thus Cx is a countable intersection of Borel sets, and so is itself Borel.

Now R, is a subgroup of G since

(1) 1eR,; .

(2) f, geR, means foge R, (since g(x,) e Cx,, Cg(x,) = gCx,= Cx, and
likewise fg(x,)e Cg(x,) = Cx,, so Cx, = Cfog(x,);

'(3) heR, means h™'eR, .

Suppose he R, and h(x,) = z. We wish to show that ze Cx,. Let 0€ 0 and
note that h~' e R, . Since h ™0 is an open set containing h ™!, there isr "' eR,_
such that r"'eh™'o. Thus hr"'eo™! = 0. Since re R, , there are g,, ..., g,€0
such that

r(x,) = g,0...0g,(x,).
Therefore, z = h(x,) = (hr " 'Xg,0...09,Xx,) € G,(x,).
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THEOREM 5. Suppose H is a separable metric topological group which acts
transitively on the topological space (X, ). Then if g is a right invariant metric
on H (ie., o(h,f) = o(hg, fg) for f, g, he H), ¢ induces a metric d on X. The
topology of (X, |d|) is finer than the topology of (X, ') and (X, |d|) is separable.
If, in addition, H is a completely metrizable space, then (X, |d|) is a completely
metrizable, separable space. If (X, T) is itself a completely metrizable separable
space, then (X, I) = (X, |d)).

Proof. Define d: X x X - R* as follows:

d(x, ) = glb{e > 0 | ye N(1)0)}.

It is routine to check that d is a metric on the set X, that the topology of (X, |d|)
is finer than the topology of (X, ), and that (X, |d|) is separable.
Suppose H is complete. Fix xe X. The map

T.: H— (X, |d)

defined by T,(h) = h(x) is continuous. It is also open: Suppose ¢ > 0, fe H.
Consider N,(f)x). Since ¢ is right invariant,

N(f) = N(D)of.

Let f(x) =y. Then N(1Xy) = {zeX | d(z, y) <&} is open in (X, |d]), and it
follows that T, is open. By a theorem of Sierpinski [21], (X, |d]) is a completely
metrizable space. The last statement follows from Ancel’s version of the Effros
Theorem [1].

Remark. In the case of a compact metric space X, the metric on
X discussed in Theorem 5 has been studied independently by Charatonik and
Mackowiak [9]. They called it the Effros metric.

At this point, one might wonder whether the R, above is

ﬂ GOi’

ieN
in general. The answer to that question is no, as we show below, and this
answers in the negative a question asked in [19]. The first part of the proof of
the following theorem is much like that of Lemma 1 in [16], and, in fact, some
phrases are actually quotes.

THEOREM 6. Suppose M is the Menger universal curve. Suppose further that

(1) o4, 0,, ... is a collection of open subsets of H(M) which gives a neighbor-
hood base for 1 such that o; = o; ! for each i€ N,

(2) for each ieN, H, = {he HM) | h = h;0...0h,} for some finite subcol-
lection {h,, ..., h,} of o,

Then M is a homogeneous continuum such that

() Ho, = {1}

ieN
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while, for each x in M, Cx = {ye M | for each o open in H(M) such that 1€ o0 and
o=0"',y=h(x) for some heH,} = M. (Actually M has very nice homo-
geneity properties (see [2], [6], [20]).)

Proof. For proofs and discussion of the homogeneity properties of M, see
the papers cited above. Now Cx = M for xe M since H (x) = M for each o in
H(M) such that 1eo and o =0""!. (Otherwise, H,(x) is open in M and
{H,(y) | ye M} decomposes M into mutually exclusive open sets.)

Suppose then that fe H(M), f # 1. Suppose M is defined in the standard
manner (see [2]) and, for i = 1, 2, 3, x; denotes the projection of M onto one of
its Sierpinski curve faces. There is some open set u in M such that

(1) for some ie{l, 2, 3}, n,(u) N~ =, f(u) = O,

(2) each of m;(u) and =, f(u) is “contractible in the complement of the other
in the plane containing the appropriate Sierpinski curve face of M”.

There is a simple closed curve L in u such that =,(L) is a “boundary” curve
B in the Sierpinski curve face such that =n;|L: L— B is a homeomorphism of
L onto B. Let r denote the “retraction of the Sierpinski curve onto B”,
“projecting radially in the plane containing it”.

Now, rom;| L= n;| L, and thus rom,|L is a continuous map of a simple closed
curve onto another simple closed curve which is essential. Suppose ¢: S —» L
and ¢': B— S are homeomorphisms where S = {ze R? | |z| = 1}. Then

@' oromop =a
is a homeomorphism from S onto S, and is thus essential. Further,
¢'orom,ofop =f

is an inessential map of S into S.
For f,geS(= {a: S = S | « is continuous}), define

é(f, g) = lub {d(f(x), g(x)) | xeS}.
Observe that the function F: H(M) — §° defined by
F(h) = ¢’orom,ohoe

is uniformly continuous. Now, if g,, g, € S® are sufficiently close, then g, and g,
are homotopic (see [10], p. 316). Suppose £ > 0 such that if ¢(g,, g,) < &, then
g, is homotopic to g, and suppose ¢ >0 such that if g(h,, h,) <, then

4(F(h,), F(hy) <.
Suppose there are f,, f,, ..., f,€ N(1) such that
f,0...of1 =1.
Let f, = 1. Now, for each j,

@'orom;of;0f;-10...0f,00 = B;
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is a map of S to S. Since i, = « is essential and f, = B is inessential, there is
least k such that f, is inessential. Then f,_, is essential and

0(Bx> Bx-1) <,
so B, and B,_, are homotopic, a contradiction.

Remark. The referee has pointed out that the above proof generalizes
easily to give the same result for the higher dimensional Menger universal
continua M2"*!,

THEOREM 7. Suppose M is the Sierpinski plane curve. Again, if the groups
H, , H . are defined as before, then M, is a nearly homogeneous continuum

019 02% *°

such that

DX

H, ={1};

1

Cx = H(M )(x) (Cx defined as before for H(M,)) for x in the dense G,-orbit of M
and Cx is the boundary curve containing x for x not in the dense Gj-orbit.

Proof. The first part of this statement can be proved with a simple version
of the previous proof.

The second part follows from noting that the dense G,-orbit of M, is
connected and that, for each boundary curve B in the dense F -orbit, B = Cx
for x € B. One can use Corollary 1 of [14] and Theorem 1.2 of [6] to get the last
part.

Remarks. Contrast these results with the following:

(1) Lewis [18] has shown that if P denotes the pseudo-arc, he H(P) and
¢ > 0, then h can be written as a composition of e-homeomorphisms. Then for
H(P)

i

(\H,, = H(P).
ieN
He has also shown [17] that H(P) contains no nondegenerate continua.
(2) Anderson [3] has shown that, in the case of the Hilbert cube Q, each
h in H(Q) is isotopic to the identity. In fact, H(Q) is connected, locally
connected, and infinite dimensional.
(3) Although H(M) and H(M,) (M is the Menger curve, M, is the Sierpinski
curve) are totally disconnected, they are not O-dimensional [6]. .’
To sum up what has been done here in this section, for G a complete
subgroup of H(X), where X is a compact metric space and xe X, Gx may be
classified as follows:
(1) Gx is complete, or equivalently second category in itself, in which case
Effros’ theorem is applicable;
(2) Gx = Cx(Cx defined as previously in this section), in which case y e Gx
means that if ¢ > 0, there is a sequence fi, ..., f,, of homeomorphisms in
N,(1) n G such that f,0...0f(x) =y; or
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(3) Gx can be decomposed into a nondegenerate collection
C = {Cy| yeGx} of disjoint homeomorphic Borel sets.

Consider the dyadic solenoid Z. The solenoid is a compact abelian
topological group. This space contains a continuous homomorph of the reals
R as a dense subgroup ([12], p. 114). Now Z is actually a closed subgroup of
H(Z), and thus there is a continuous homomorphism a: R — H(Z) and R acts
on X. [In fact, if G is a separable metric group and there is a continuous
homomorphism f from G into H(X), where X is a compact metric space, then
G acts on X, this action ¢ being defined by ¢(g, x) = B(g)x) for (g, x)e G x X.]
Now R is complete, but a(R)(x) is dense in X and not complete for some x.
Thus a(R)x) would be an orbit under the action of R which has the property
that

[« 2]

a(RYx) = () a(R,)x),

i=1

where o; = (—1/i, 1/i) for each i, and

R, ={xeR|x =) x; for some {x,,..., x,} =0} =R.
i=1

Now, although a: R — H(Z) is a continuous homomorphism and, in fact, an
isomorphism, a(R) is not homeomorphic to R in H(ZX). Also, it is a fact that
topologically H(X) does contain dense copies of R (see [13]). But does it contain
a copy of R which is both algebraically and topologically R? (P 1381) Is there
G, a complete subgroup of H(X) for some homogeneous continuum X, such
that for some x in X, Gx is of type (2) in the preceding classification, but not of
type (1)? (P 1382)

Why would anyone be interested in orbits of compact metric spaces to
which Effros cannot be applied? Other than the obvious fact that there are
many interesting continua which are not homogeneous or which admit some
orbits which are not complete, there is this consideration: Often when one is
trying to decide what stronger homogeneity properties a given homogeneous
continuum X has, one looks at how H(X) acts on spaces other than X, e.g., how
H(X) acts on F*(X) for ne N (see [23]).

III. Characterizations of n-homogeneity and near n-homogeneity. The
following theorem uses the Effros result very heavily. It also uses techniques
developed largely by Ungar [22], [23].

THEOREM 8. Suppose X is a continuum and ne N. Then the following are
equivalent:

(1) X is n-homogeneous.

(2) If A’ is a nowhere dense subset of F"(X) and x € F(X), ¢ > 0, there is some
he N (1) € H(X) such that h(x)¢ A'.

(3) If A is a first category subset of F'(X) and D is a countable subset of
F"(X), there is a homeomorphism h in H(X) such that h(D)n A = O.
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(4) If A is afirst category subset of F*(X) and x € F*(X), there is a homeomor-
phism h in H(X) such that h(x)¢ A.

The proof of this theorem will follow from the proofs of the next theorems.

THEOREM 9. Suppose X is an n-homogeneous continuum, A is a first category
subset of F'(X) and D is a countable subset of F"(X). Then there is some h in H(X )
such that (D)n A = Q.

Proof. Since X is homogeneous, a theorem of Burgess [8] gives the result
that either X is a simple closed curve or no finite set of points separates X. If no
set of n—1 points separates X, Lemma 3.9 and Theorem 3.8 of Ungar [22] give
the result that F"(X) is connected and X is strongly n-homogeneous. Then X is
either a simple closed curve or X is strongly n-homogeneous.

First suppose X is strongly n-homogeneous and suppose x € F*(X). Then

T.: H(X) - F*(X)
defined by

T(h) = h(x) (= (h(x,), ..., h(x,)), wherex = (x, ..., X,))

is a continuous, onto, open mapping by Effros’ theorem. Now A is first
category in F*(X), so there is some F,-set A" in F*(X) such that A4’ is first
category and A’ contains A. Let

E=F(X)—A'.

Since E is G, in F*(X), T, !(E) is dense G, in H(X). (Recall that T, is continuous
and open.)

Consider () {T, !(E) | xe D} = K. Then, by the Baire Category Theorem,
K is dense G, in H(X). Choose h from K. If de D, then h(d)e E and h(d)¢ A.
Thus h(D)n A = 9.

Now suppose X is a simple closed curve and suppose x e F*(X). Then

T.: HX) - F(X)
defined by

T.(h) = h(x) (= (h(x,), ..., h(x,)), where x = (x,, ..., X))

is a continuous, open (but not onto) mapping by Effros’ theorem. Now A is first
category in F*(X), so there is some F_-set A’ in F"(X) such that A’ is first
category and A’ contains A. Let

=F(X)—A'.
Since E is dense G, in FX), T, (E) is dense G, in H(X). (’Recall that T, is
continuous and open, and E n T(H(X)) must be dense G, in T, H(X_D
Consider (\{T; '(E) | xe D} = K. By the Baire Category Theorem K is
dense G, in H(X). Choose h from K. If de D, then h(d)e E and h(d)¢ A. Thus
h(D)nA=0.
THEOREM 10. Suppose that X is a continuum. Suppose that if A is a first
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category subset of F"(X) and x € F(X), then there is some h in H(X) such that
h(x)¢ A. Then X is strongly n-homogeneous or X is a simple closed curve.

Proof. Suppose that xe F"(X). Denote H(X)x) simply by Hx. Now, Hx
cannot be a first category set in F"(X), for if so, then there is some h in H(X)
such that h(x)¢ Hx, and this cannot happen. Then Hx is a second category
subset of F*(X), and is thus second category in itself. Effros’ theorem then
implies that each orbit is a G,-set in F(X).

But, since x e F*(X) implies that Hx is second category in F*(X), we also

know that (Hx)* # @. Since he H(X) implies h((mf) = (Hx)°, we have
Hx < (Hx)": Suppose z€(Hx)" N Hx and te Hx. There is some /4 in H(X) such

that A(z) =t¢, and te(Hx)°. (If A is a set, A° denotes the interior of A.)
Now, if x and y are points of F*(X) such that Hx n Hy = @, then also

(Hx)* 0 (Hy)\ = @.
Otherwise, (ﬁ;)° r\(H_y)° is a nonempty open set, and
Hxn((Hx)° n(HyY) and Hyn((Hx)° n(Hy))
are mutually exclusive dense G;-sets in (mr N (H_y)°. This is impossible. Then
Hx = Hx = (ﬁ)°.
Indeed, suppose zeHx. Then
zeHz ¢ (E)° and (E)° N (T-I—x_)" # 0,

and so Hz = Hx.

If n = 1, we can conclude that X is homogeneous, since X is a continuum
and does not consist of a nondegenerate collection of disjoint open-closed sets.
Suppose n > 1. We can still conclude that if xe€ X, then H(X)x) is open. (H is
acting on X now, not F*(X). Since z =(z,, ..., 2,) is in F"(X) implies that
H(zy, ..., z,) is open in F"(X), there is some open set u = u, X u, X ... xu, such
that z;eu; for each i<n and u < H(z,, ..., z,). Then u; € H(X)z;) for each
i < n, and thus H(X)z;) is open in X.) But then X is homogeneous, for it is
a continuum.

Then we know from a theorem of Burgess [8] that either X is a simple
closed curve or no set of n—1 points separates X. If no set of n—1 points
separates X, Lemma 3.9 and Theorem 3.8 of Ungar [22] imply that F*(X) is
connected and X is strongly n-homogeneous. Then X is either a simple closed
curve or X is strongly n-homogeneous.

COROLLARY 11. Suppose that the continuum X has the property that if A’ is
a nowhere dense subset of F'(X) and xe F"(X), ¢ > 0, then there is some
heN,(1) € H(X) such that h(x)¢ A’. Then X is n-homogeneous.

Proof. This is just a special case of the situation in Theorem 10. If 4’ is

8 — Colloquium Mathematicum LIX.1
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a nowhere dense subset of F"(X), then A’ is a first category subset of F"(X).
Also, if there is some he N (1) (for some ¢ > 0) such that h(x)¢ A’, then there is
he H(X) such that h(x)¢ A. Then X is strongly n-homogeneous or X is
a simple closed curve by Theorem 10. Since simple closed curves are
n-homogeneous, the corollary follows.

To finish off Theorem 8. We have now (1)=(3)=(4)=(1) and
(2) = (1). Since if X is n-homogeneous, X is either a simple closed curve or X is
strongly n-homogeneous, and in either case xeF*(X) defined by

T(h) = (h(x,), ..., h(x,)), where x = (x,,..., X,),

is open, we have (1)=(2).

We will say that the space X is nearly strongly n-homogeneous if whenever
{xy, ..., x,} is an n-element subset of X and {v,, ..., v,} is a set of n open sets
of X, there is some he H(X) such that h(x,)ev; for each ieN.

THEOREM 12. Suppose that X is a continuum, ne N, and F"(X) is connected.
Then the following are equivalent:

(1) X is nearly n-homogeneous.

(2) If A is a nowhere dense subset of F'(X) and x € F'(X), there is he H(X)
such that h(x)¢ A.

(3) X is nearly strongly n-homogeneous.

Proof. (1)=(2). Suppose
P={¢p| ¢ is a 1-1 function from {1, ..., n}onto{l, ..., n}}.
Then, for each @peP, let
A, ={z=1(2y, ..., 2)€ F'(X) | z; = X,), Where x =(x,, ..., x,)€ A}.

Then A, is homeomorphic to A for peP, and since P is finite, the set
i = U 4,

is nowhere dense in F"(X). There is some basic open set u = u, X ... xu, in
F*(X) such that un A = @. Note that

Up(1) X +vo XUgmy = U,

has the property that u,n A = @ also for p€P.
Suppose xeF'(X), x =(x;,...,X,). There is some h in H(X) and
z=(24, ..., z,)€u such that

h({Xy, oo X,3) = {24, - -5 2,)-
Then h(x;) = z,; for some e P and

h(x) = (h(x,), ..., h(x,))€u,.
Thus h(x)¢ A.
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(2) = (3). If x € F'(X), then H(X)(x) is not nowhere dense in F*(X), so there is
some open subset u of F*(X) such that H(X)(x) is dense in u. Let

U, = {u open in F*(X)| H(X)x) is dense in u}*.

Then H(X)x) < U,, and for ze H(X)x), te H(X)x)n U, there is some h in
H(X) such that h(t) = z. Then there is some open o < U, such that teo. Thus
zeh(o) and H(X)x) is dense in h(o), so h(o) < U,.

Suppose that U, n U, # @. Suppose

weH(X)x) and weHX)x)nU,nU,
Now w' € H(X)Xy), and since there is some k in H(X) such that k(w') = w, we

have we H(X)(y) and we U,. Then H(X)x) < U,. Likewise H(X)(y) € U,. Thus
U,=U, and it follows (if one notes that H(X)w)n U, # @ implies
U,nU, #@ and that U, = U,) that U, = U,. Then F"(X) can be written as
a union of mutually exclusive open sets. But F"(X) is connected, and this
cannot happen unless U, = F"(X). It now follows that X is nearly strongly
n-homogeneous. '

(3)=(1) is obvious.
Remarks. The preceding theorem is an analog to Ungar’s result that if

F*(X) is connected, and X is a compact metric space, then X is n-homogeneous
iff X is strongly n-homogeneous.

Burgess [7] asked in 1955 whether for n > 1 every n-homogeneous metric
continuum is (n+ 1)-homogeneous. The answer to this question is still not
known, although some partial results have been obtained:

(1) ([23]) If X is a connected compact metric space, then X is
n-homogeneous for all n iff X is countable dense homogeneous.

(2) ([20]) If X is a 2-homogeneous continuum and X admits a stable
homeomorphism other than the identity, then X is representable.

(A separable space X is countable dense homogeneous if whenever A and
B are countable dense subsets of X, there is a homeomorphism h in H(X) such
that h(A) = B. A stable homeomorphism h of the space X onto itself is one which
has the property that it is a composition of homeomorphisms of H(X) so that
each homeomorphism in the composition is the identity on some non-empty
open set. A space X is representable means that if xe X, and u is open in X such
that x e u, then there is an open set v in X such that (1) xev = u; and (2) if yev,
there is h in H(X) such that h(x) =y and h(z) = z for z¢v.)
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