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REPRESENTATION OF OPERATORS ON IL'-SPACES
BY NONDIRECT PRODUCT MEASURES

BY

A. IWANIK (WROCLAW)

The idea of representing L'-operators by measurable kernels goes
back to Kantorovié¢ and Vulikh [5]. The 1-1 correspondence between
L'-operators and certain measures on the product space was recognized
by Grothendieck ([2], p. 62). Similar representation theorems were proved
and applied in [1] and [3]. A related theorem is obtained in [4] (Theo-
rem 3.1). In all these results strong topological assumptions (such as com-
pactness or local compactness) are imposed on the underlying measure
spaces.

The aim of this note is to clarify the role of compactness by proving
a purely measure theoretic version of the representation theorem without
any explicit topological assumptions. The notion of perfect measure turns
out to be decisive in this context.

Let (X,, 2,, m;) and (X,, 2,, m,) be two probability spaces. Given
a set function u defined on X, X 2, rectangles we define the marginals
of u by

pl(Ad) = p(AxX,) (AeZy), p*B)=pn(X,xB) (Bel).

If u is positive, (finitely) additive, and satisfies ' = m;, then we say
that u is a (nondirect) product of m,, m,.

Let B denote the linear space consisting of all linear combinations
of the form )'a,f; ® h;, where f; and h; are characteristic functions of sets
in X, and X,, respectively. B endowed with the sup norm becomes a norm-
ed vector lattice. The Banach lattice dual B’ is the AL-space of all bound-
ed additive measures (with total variation norm) defined on the algebra
generated by X, x X, rectangles. Let J be the lattice ideal in B consisting
of all functions which vanish m, X m, almost everywhere. Clearly, (B/J)’
is a sublattice of B’ and u € (B/J)’ iff 4 vanishes on all rectangles of m, x m,
measure zero. Now u(f® h) is well defined if f and h are (classes of) simple
functions on (X,, 2, m,) and (X,, X;, m,), respectively.

In (B/J)' we distinguish a subspace M (m,, m,) of all u € B’ such that
the |u|* are countably additive, absolutely continuous with respect to m;,
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and d|u|'/dm, € L”(m,). In particular, all products of m, and m, are in
M (my, m,). Clearly, M(m,, m,) is a lattice ideal in (B/J)' and in B’.

The following proposition is a modified version of Theorem 1 in [3].
The proof is essentially the same with obvious simplification of the second
part of the argument.

ProrosITION 1. The formula (T,f,h) = u(f®h), where f and h are
simple functions, establishes a lattice isomorphism between M (m,, m;) and
the Banach lattice & (L' (m,), L' (m,)) of all continuous operators from L'(m,)
into L' (m,). Moreover, |T,| = |Id|ul'/dm,||,.

It T, = T, we shall say that T is represenied by u. It is clear that for
every u € M(m,, m,) the form u(f® h) extends uniquely to a continuous
bilinear form on L'(m,) x L*(m,). It should also be remarked that 7,1
= du'/dm; and T,1 = du?[dm,.

LEMMA. Let m; (¢ = 1, 2) be a finite positive measure on Z; absolutely
continuous with respect to m;. If every product of m, and m, is ¢-additive,
then the same is true for m, and m,.

Proof. Let u be a product of m, and m, and put f; = dm;/dm;. Then
p € (B/J), and u is the (total variation norm) limit of its restrictions to
{(z, ¥): fr(®) < n, fo(y) < »}. Since o-additive measures form a -closed
(= norm complete) subspace of B’, we may assume that, for some =,
f; < n everywhere.

Let g, = n—f,. We define du, = g,dm, X dmy and us = (u+ u,)/n.
Clearly, du;/dm, < 2. Now let g, = 2 — dy [dm,. We put du; = dm, X g;dm,
and p, = (us+ py)/2. Obviously, duj/dm, = 1 and du;/dm, = (1+ [ g.dm,)[2
= const = 1 because u, is a probability measure. By assumption, u,
is o-additive. We conclude that u is o-additive as a linear combination
of the o-additive measures y,.

We have the following consequence of our lemma and Proposition 1:

THEOREM. Let (X;, X;, m;), © = 1,2, be probability spaces. Then the
Sfollowing conditions are equivalent:

(i) Every product of m, and m, is c-additive.

(ii) Every additive measure u € B’ such that the marginals |ul* are
a-additive and absolutely continuous with respect to m,; i3 o-additive.

(iii) Ewvery operator T € £L(L'(m,), L'(m,)) is represented by a o-ad-
ditive finite measure u on the product o-algebra X, X X,.

In [3], (iii) was obtained for Borel probabilities on the unit interval
and, more generally, for finite Radon measures on compact Hausdorff
spaces. In both cases the measure theoretic compactness (= Marczewski
compactness) of m, or m, allowed us to apply the Marczewski - Ryll-Nar-
dzewski theorem on nondirect products [7] (this idea was earlier used by
Brown in [1]). We recall that a finite measure m on (X, X) is called com-
pact [6] if there exists a family X, of subsets of X satisfying
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(a) for every sequence A, € X, with (|4, =@ there exists k such
that
nAn = Q;

n<k

(b) for every A € X and every ¢ > 0 there exist 4,2, and Be X
such that

BcAd,cA and m(A\B)<e.

It is well known that every probability space can be extended to
a compact space. More precisely, given (X, 2, m), one can construct
an extension (X,X,m) (ie. XoX, XX =%, m(X) =1, and m*|Z

= m) such that m is a compact measure. This can be done, e.g., by Stone
compactification.

A property of measures weaker than compactness is perfectness.
A finite measure is called perfect if all its restrictions to countably generated
sub-o-algebras are compact (see [9] for other equivalent definitions).
It was proved by Ryll-Nardzewski [9] that products of perfect measures
are always o-additive. Pachl [8] has shown that perfectness is essentially
the weakest possible assumption that guarantees (i). More specifically,
if one of the measures, say m,, is fixed, then (i) holds for an arbitrary
probability measure m, iff m, is perfect. On the other hand, no individual
characterization of measures m,, m, satisfying (i) seems to be known even
in the case of m, = m,. In fact, there exist examples of nonperfect measures
m, = m, satisfying (i) (see [8]) (*).

ProproSITION 2. Let (X;, 2;, m;), © = 1, 2, be probability spaces and let
(X;, X;, m;) be their extensions with at least one of the measures m,, my per-
fect. Then (i)-(iii) are equivalent to

(iv) p* (X, x X;) =1 for every product z of m, and m,.

Proof. (i)=(iv). Let @ be a product of m, and ;. Then & is o-ad-
ditive by perfectness. We define a set function u on X, x X, rectangles by

(*) I‘((Zl x d,)n (X, XX:)) = (4, x4,),
where 4, € X;. The definition is correct because if

(4, Xzz)"‘(xl x X,) = (B, XB2)n(X1 x X,),

(1) The construction in [8], p. 337, seems to be incorrect. It can be correct if we
assume that sets of cardinality less than 2% have Lebesgue measure zero. The family of
all Borel sets whose projections are uncountable should then be replaced by the family
of all Borel sets D such that A(D)# 0 for some nondirect product measure 1. See also
J. K. Pachl, Oorrection to the paper “Two classes of measures’’, Colloquium Mathe-
maticum 45 (1981), p. 331-333.
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then
F((Z1 x A,) = (B, XEz)) < ﬁ((zl = B,) X Xz) +F(X1 x (4, ;Bz))
= m1(Zl ;'.El) +mz(zz ;Es) =0

in view of (m;).(X;\X;) =0. Clearly, u(X,xX,) = 1.

By an analogous argument, u is finitely additive. Since uf(4;n X;)
= m;(A4;) = m;(4;nX,), from (i) we infer that u is o-additive. Therefore
#(Cn (X, x X,)) = a(C) for every C e X, xX,, whence 5*(X,xX,) =1.
_ (iv) = (i). Let u be a product of m, and m,. Then (*) determines a fi-
nitely additive measure @ on X, xX, rectangles. Clearly, @' = m;, so
j is oc-additive by perfectness. Since i*(X,x X,) =1, the measure
v = g*| (2, x X,) is also o-additive. By (), » coincides with u on X, X X,
rectangles, so u is o-additive.

It should be noted that (iv) cannot be weakened to the requirement
that (M, xM,)* (X, X X;) = 1, since the latter is simply equivalent to
m; (X;) =1 and is always satisfied by assumption.

If m; are o-finite measures on X, then by the Lemma, (i)-(iv) hold
either for all or for none equivalent finite measures m,. The following
proposition shows that the finiteness assumption can be relaxed in the
representation theorem.

ProprosITION 3. Let (X,;, Z;, m;), ¢ =1, 2, be o-finite measure spaces
and let m; be finite equivalent measures. Then (iii) 18 equivalent to

(iii') Every positive operator in £ (L'(m;), L'(m,)) is represented by
a positive o-additive o-finite measure on Xy X X,.

Proof. The mapping f —f' = (dm,/dm;)f is a Banach lattice isomor-
phism - from L'(m,) onto L'(m;). The formula T,f = (Tf) defines an
isometric isomorphism between the corresponding Banach spaces of opera-
tors (the diagram commutes). If (iii) holds and x represents T > 0, we let
dp, = ((dmy[dm,) ®1)du. Tt is easy to see that the measure u, is positive,
o-finite, and represents 7', in the sense that

J(Tf hdmy, = [f'@hdp, (f € L' (my), b e L= (my)),

and |7, = ||du,/dm,|l,. The converse implication is proved similarly.
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